Answer:
x = 10/√2 ≈ 7.07
Step-by-step explanation:
Comenzaremos por dividir el triángulo en dos partes y definir H, como en la figura adjunta.
Aplicando el teorema de Tales, sabemos que:

También sabemos que, dado que el tirángulo menor es la mitad que el triángulo mayor, la relación entre áreas es:

Dado que formamos dos triángulos rectángulos, podemos despejar el valor de H como:

Podemos entonces despejar x de la siguiente manera:

Answer:
b = 1, c = -1 and d = 4
Step-by-step explanation:
To solve this question the rule of multiplicity of a polynomial is to be followed.
If the multiplicity of a polynomial is even at a point, graph of the polynomial will touch the x-axis.
If the multiplicity of the polynomial is odd, graph will cross the x-axis at that point.
From the graph of function 'f',
f(x) = (x - b)(x - c)²(x - d)³
Since, graph of the function 'f' crosses x-axis at x = 1 and x = 4, multiplicity will be odd and touches the x-axis at x = -1 multiplicity will be even.
So the function will be,
f(x) = (x - 1)[x - (-1)]²(x - 4)³
Therefore, b = 1, c = -1 and d = 4 will be the answer.
It would be x=16 if you need the answers
Answer:
m∠B = 69°
General Formulas and Concepts:
- Order of Operations: BPEMDAS
- Complementary Angles add up to 90°
Step-by-step explanation:
<u>Step 1: Define</u>
m∠A = (x + 9)°
m∠B = (7x - 15)°
<u>Step 2: Set up equation</u>
m∠A + m∠B = 90°
(x + 9)° + (7x - 15)° = 90°
<u>Step 3: Solve for </u><em><u>x</u></em>
- Combine like terms: 8x - 6 = 90
- Add 6 to both sides: 8x = 96
- Divide both sides by 8: x = 12
<u>Step 4: Find m∠B</u>
- Define: m∠B = (7x - 15)°
- Substitute: m∠B = (7(12) - 15)°
- Multiply: m∠B = (84 - 15)°
- Subtract: m∠B = 69°
Answer: 
Step-by-step explanation: 