By simplifying
. This will result in a simplified version of
.
The Simplifying Algorithm is a wonderful way to simplify complex mathematics problems. It can be used to solve equations, convert fractions to decimals, and perform many other math operations. In this problem, the Simplifying Algorithm will help you reduce ![\[x - \frac{{23}}{{{x^2}}} - x - 20 - \frac{2}{5} - x\]](https://tex.z-dn.net/?f=%5C%5Bx%20-%20%5Cfrac%7B%7B23%7D%7D%7B%7B%7Bx%5E2%7D%7D%7D%20-%20x%20-%2020%20-%20%5Cfrac%7B2%7D%7B5%7D%20-%20x%5C%5D)
Since two opposites add up to 0, remove them from the expression.
![\[ - \frac{{23}}{{{x^2}}} - \frac{{102}}{5} - x\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B23%7D%7D%7B%7B%7Bx%5E2%7D%7D%7D%20-%20%5Cfrac%7B%7B102%7D%7D%7B5%7D%20-%20x%5C%5D)
Write all numerators above the least common denominator 5x2
![\[ - \frac{{115 + 102{x^2} + 5{x^3}}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B115%20%2B%20102%7Bx%5E2%7D%20%2B%205%7Bx%5E3%7D%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Use the commutative property to reorder the terms so that constants on the left
![\[\frac{{ - 5{x^3} - 115 - 102{x^2}}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%5Cfrac%7B%7B%20-%205%7Bx%5E3%7D%20-%20115%20-%20102%7Bx%5E2%7D%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Rearrange the terms
![\[\frac{{ - 5{x^3} - 102{x^2} - 115}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%5Cfrac%7B%7B%20-%205%7Bx%5E3%7D%20-%20102%7Bx%5E2%7D%20-%20115%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
By reording the terms
![\[ - \frac{{5{x^3} + 102{x^2} + 115}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B5%7Bx%5E3%7D%20%2B%20102%7Bx%5E2%7D%20%2B%20115%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Hence, by simplifying this equation, divide both numerator and denominator. This will result in a simplified version of
.
To learn more about simplifyication visit:
brainly.com/question/1542396
#SPJ1
Answer:
4/9
Step-by-step explanation:
0.4444... can be written as a geometric series with first term 0.4 and common ratio 0.1. Each new digit is 0.1 times the previous digit.
0.4
Then 0.4444... = ------------ = 0.4/0.9 = 4/9
1 - 0.1
You may check this result by dividing 4 by 9 on a calculator.
The answer is -4x + 6 hope this helps
Step-by-step explanation:
This seems like you just want to figure out the circumference of the manhole cover. The formula for the circumference of a circle is pi (3.14) multiplied by the diameter (d) of the circle so, circumference=πd. (π is the symbol for pi and approx. equals 3.14)
Circumference = πd
= 3.14(d)
= 3.14(3)
= 9.42 ft.
The length of the brass grip-strip will be 9.42 ft.
If the problem was stated in terms of the radius of the manhole cover then the formula would be circumference = 2πr which is the radius multiplied by 2 then multiplied by pi.
The radius of a circle is the distance from the center to the edge and the diameter is the distance from one edge of the circle to the other passing through the center of the circle.
Well, if the grip strip were of no width and could be straightened out to a line (which a piece of rubber cut in a circle couldn't be), then the length of the grip would correspond to the circumference of the manhole cover.
Circumference = 2*PI*radius = PI*diameter so your answer is 3*PI feet long.
Answer:
A. y ≥ 2x – 2
Step-by-step explanation: