5Cbigg%28%20%5Cfrac%7B1%7D%7Bk%7D%20%20%5Cbigg%29%5CGamma%20%5Cbigg%28%20%20%5Cfrac%7B2%7D%7Bk%7D%20%5Cbigg%29%5CGamma%20%5Cbigg%28%20%20%5Cfrac%7B3%7D%7Bk%7D%20%5Cbigg%29%20%5Cdots%5CGamma%20%5Cbigg%28%20%5Cfrac%7Bk%7D%7Bk%7D%20%20%5Cbigg%29%7D%20%20%5C%5C%20" id="TexFormula1" title=" \rm \lim_{k \to \infty } \sqrt[ k]{ \Gamma \bigg( \frac{1}{k} \bigg)\Gamma \bigg( \frac{2}{k} \bigg)\Gamma \bigg( \frac{3}{k} \bigg) \dots\Gamma \bigg( \frac{k}{k} \bigg)} \\ " alt=" \rm \lim_{k \to \infty } \sqrt[ k]{ \Gamma \bigg( \frac{1}{k} \bigg)\Gamma \bigg( \frac{2}{k} \bigg)\Gamma \bigg( \frac{3}{k} \bigg) \dots\Gamma \bigg( \frac{k}{k} \bigg)} \\ " align="absmiddle" class="latex-formula">
1 answer:
We have
![\sqrt[k]{\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)} \\\\ = \exp\left(\dfrac{\ln\left(\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)\right)}k\right) \\\\ = \exp\left(\dfrac{\ln\left(\Gamma\left(\dfrac1k\right)\right)+\ln\left( \Gamma\left(\dfrac2k\right)\right)+ \cdots +\ln\left(\Gamma\left(\dfrac kk\right)\right)}k\right)](https://tex.z-dn.net/?f=%5Csqrt%5Bk%5D%7B%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%7D%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%5Cright%29%7Dk%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%5Cright%29%2B%5Cln%5Cleft%28%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%5Cright%29%2B%20%5Ccdots%20%2B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%5Cright%29%7Dk%5Cright%29)
and as k goes to ∞, the exponent converges to a definite integral. So the limit is
![\displaystyle \lim_{k\to\infty} \sqrt[k]{\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)} \\\\ = \exp\left(\lim_{k\to\infty} \frac1k \sum_{i=1}^k \ln\left(\Gamma\left(\frac ik\right)\right)\right) \\\\ = \exp\left(\int_0^1 \ln\left(\Gamma(x)\right)\, dx\right) \\\\ = \exp\left(\dfrac{\ln(2\pi)}2}\right) = \boxed{\sqrt{2\pi}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bk%5Cto%5Cinfty%7D%20%5Csqrt%5Bk%5D%7B%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%7D%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Clim_%7Bk%5Cto%5Cinfty%7D%20%5Cfrac1k%20%5Csum_%7Bi%3D1%7D%5Ek%20%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cfrac%20ik%5Cright%29%5Cright%29%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cint_0%5E1%20%5Cln%5Cleft%28%5CGamma%28x%29%5Cright%29%5C%2C%20dx%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%282%5Cpi%29%7D2%7D%5Cright%29%20%3D%20%5Cboxed%7B%5Csqrt%7B2%5Cpi%7D%7D)
You might be interested in
23 + 2 = 25+65 = 90 degrees
It's D, 3-2i.
Hope this helps
Answer:
( 6(x)² + 12(x) - 90 ) ft³
Explanation:
- <u>deep end water</u>: 2(x)² + 12(x) + 10
- <u>shallow end water</u>: 4(x)² - 100
addition problem: 2(x)² + 12(x) + 10 + 4(x)² - 100
total volume of water:
- 2(x)² + 12(x) + 10 + 4(x)² - 100
- 2(x)² + 4(x)² + 12(x) + 10 - 100
Graph one: A01- 100 miles
A03 (a)- 50
Answer:
148.91
Step-by-step explanation:
hope it helps<333