1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANEK [815]
2 years ago
12

Is -17/-40 equal to -0.425

Mathematics
2 answers:
Ne4ueva [31]2 years ago
5 0

No, because if you do -17/-40 you would get a positive answer of 0.425 and it would not equal -0.425.

Monica [59]2 years ago
4 0
no its would be 0.425 because negative and negative is a positive
You might be interested in
Describe the graph of a quadratic function below given in table form
Kipish [7]
1526273784483883 the form of the h=
6 0
2 years ago
What is the equation of the graphed line written in standard form?
Dmitry_Shevchenko [17]

Answer:

A

Step-by-step explanation:

4 0
3 years ago
Y''+y'+y=0, y(0)=1, y'(0)=0
mars1129 [50]

Answer:

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Step-by-step explanation:

A second order linear , homogeneous ordinary differential equation has form ay''+by'+cy=0.

Given: y''+y'+y=0

Let y=e^{rt} be it's solution.

We get,

\left ( r^2+r+1 \right )e^{rt}=0

Since e^{rt}\neq 0, r^2+r+1=0

{ we know that for equation ax^2+bx+c=0, roots are of form x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} }

We get,

y=\frac{-1\pm \sqrt{1^2-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

For two complex roots r_1=\alpha +i\beta \,,\,r_2=\alpha -i\beta, the general solution is of form y=e^{\alpha t}\left ( c_1\cos \beta t+c_2\sin \beta t \right )

i.e y=e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Applying conditions y(0)=1 on e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right ), c_1=1

So, equation becomes y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

On differentiating with respect to t, we get

y'=\frac{-1}{2}e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )+e^{\frac{-t}{2}}\left ( \frac{-\sqrt{3}}{2} \sin \left ( \frac{\sqrt{3}t}{2} \right )+c_2\frac{\sqrt{3}}{2}\cos\left ( \frac{\sqrt{3}t}{2} \right )\right )

Applying condition: y'(0)=0, we get 0=\frac{-1}{2}+\frac{\sqrt{3}}{2}c_2\Rightarrow c_2=\frac{1}{\sqrt{3}}

Therefore,

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

3 0
3 years ago
Whats the root number for 64
ss7ja [257]
The answer is 8 plz make me brainlist

5 0
3 years ago
Read 2 more answers
Which choices are solutions to the following equation?<br> Check all that apply.<br> x^2 - 3x = -5/4
Ulleksa [173]

Answer:

The answer to this question is C.

7 0
3 years ago
Other questions:
  • given T(0, 6, 3) and M(1, 4, -3) find the ordered triple that represents TM then find the magnitude of TM
    6·2 answers
  • F(x)=x^2+2x-24? How to solve
    15·1 answer
  • What is x² + 7x - 30​
    9·1 answer
  • Please help, thanks!<br><br> Factor completely<br><br> Sx²- 13x² + 15x²
    8·1 answer
  • Bananas are $0.59/pound, what is the constant of proportionality?
    5·1 answer
  • Use absolute value to write an expression describing the size of each amount. a. An elevation of 250 feet. b. A credit card bala
    11·1 answer
  • A motorcyclist traveled a distance of 120 miles in 2 hours. Traveling at the same speed, how far would this motorcyclist travel
    10·1 answer
  • Solve: 2x - 3 = 2x - 5​
    6·1 answer
  • Please answer with explanation, I don't understand.<br><br> <img src="https://tex.z-dn.net/?f=%5Csqrt%7Bx%5E2-14x%2B49%7D%20%3Dx
    15·1 answer
  • Anybody know the answer for this? ;-;
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!