1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alja [10]
2 years ago
11

7B1%7D%7B2%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B8%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B16%7D%20%5Cdots%7D%20%7D%20%7D%20%7D%20%5C%3A%20%2B%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B4%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B8%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B16%7D%20%5Cdots%7D%20%7D%20%7D%20%7D%20%5Cright%29%20dx%20%5C%5C%20" id="TexFormula1" title=" \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ " alt=" \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ " align="absmiddle" class="latex-formula">
Mathematics
1 answer:
dlinn [17]2 years ago
5 0

We have the identity

\left(\sqrt x + \dfrac1{2^n}\right)^2 = x + \dfrac1{2^{n-1}} \sqrt x + \dfrac1{2^{2n}}

Take the square root of both sides and rearrange terms on the right to get

\sqrt x + \dfrac1{2^n} = \sqrt{x + \dfrac1{2^{n-1}} \left(\sqrt{x} + \dfrac1{2^{n+1}}\right)}

Decrementing n gives

\sqrt x + \dfrac1{2^{n-1}} = \sqrt{x + \dfrac1{2^{n-2}} \left(\sqrt{x} + \dfrac1{2^{n}}\right)}

and substituting the previous expression into this, we have

\sqrt x + \dfrac1{2^{n-1}} = \sqrt{x + \dfrac1{2^{n-2}} \sqrt{x + \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right) } }

Continuing in this fashion, after k steps we would have

\sqrt x + \dfrac1{2^{n-k}} = \sqrt{x + \dfrac1{2^{n-(k+1)}} \sqrt{x + \dfrac1{2^{n-k}} \sqrt{x + \dfrac1{2^{n-(k-1)}} \sqrt{\cdots \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right)}}}}

After a total of n - 2 steps, we arrive at

\sqrt x + \dfrac14 = \sqrt{x + \dfrac12 \sqrt{x + \dfrac1{2^2} \sqrt{x + \dfrac1{2^3} \sqrt{\cdots \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right)}}}}

Then as n goes to infinity, the first nested radical converges to √x + 1/4. Similar reasoning can be used to show the other nested radical converges to √x - 1/4. Then the integral reduces to

\displaystyle \int_e^{e^2} \left(\sqrt x - \frac14\right) + \left(\sqrt x + \frac14\right) \, dx = 2 \int_e^{e^2} \sqrt x \, dx = \boxed{\frac43 \left(e^3 - e^{\frac32}\right)}

You might be interested in
If possible, please answer in detail :) I need to know if my answers are correct.
g100num [7]

Answer:

Sid : [tied up] This is either really good or really bad.

6 0
3 years ago
Read 2 more answers
What is the are of the walls and cellings ? & what is the area of the window? How many cans o paint should she buy ?
nignag [31]

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3 0
3 years ago
If the circumference is 4.6pi what is the area​
Keith_Richards [23]

Answer:

The area of a circle with a circumference of 4.6 is 1.684

Step-by-step explanation:

I think its that. Im not sure ;-;

6 0
3 years ago
Please solve equations by completing square
BlackZzzverrR [31]
x^2-4x+1=0\\
x^2-4x+4-3=0\\
(x-2)^2=3\\
|x-2|=\sqrt3\\
x-2=\sqrt3 \vee x-2=-\sqrt3\\
x=2+\sqrt3 \vee x=2-\sqrt3

x^2+6x-9=0\\
x^2+6x+9-18=0\\
(x+3)^2=18\\
|x+3|=\sqrt{18}=3\sqrt2\\
x+3=3\sqrt2 \vee x+3=-3\sqrt2\\
x=-3+3\sqrt2 \vee x=-3-3\sqrt2\\

x^2+20x+3=0\\
x^2+20x+100-97=0\\
(x+10)^2=97\\
|x+10|=\sqrt{97}\\
x+10=\sqrt{97} \vee x+10=-\sqrt{97}\\
x=-10+\sqrt{97} \vee x=-10-\sqrt{97}

x^2-2x-5=0\\
x^2-2x+1-6=0\\
(x-1)^2=6\\
|x-1|=\sqrt6\\
x-1=\sqrt6 \vee x-1=-\sqrt6\\
x=1+\sqrt6 \vee x=1-\sqrt6
8 0
3 years ago
Jordan has $55.She earns 67 by doing chores. How much money does Jordan have now ?
rosijanka [135]
Add the values, then you get the answer. 

55+67 = ?

    55
 + 67
------------
   122


Final answer: $122 is how much Jordan has.


5 0
3 years ago
Read 2 more answers
Other questions:
  • What does 4 raised to the 3/2 power equal?
    15·2 answers
  • Reggie was looking at a map of the school the scale shows that 1 inch equals 150 ft if the distance between his classroom in the
    14·2 answers
  • Suppose that y varies inversely with x. write an equation for the inverse variation.y = 2 when x = 3
    8·1 answer
  • − 3 x 2 + 6 x = − 2 <br> what is the solution to this problem?
    5·1 answer
  • What is 15/64 x 1/12 equal to?​
    5·1 answer
  • A square playing field has an area of 1,255 square yards.about how long is each side of the field
    5·1 answer
  • 3.01)Which statement best describes the area of the triangle shown below?
    10·1 answer
  • The graph of a proportional relationship contains the point (20, 4).
    13·2 answers
  • If the length of the shorter arc AB is 22cm and C is the center of the circle then the circumference of the circle
    10·1 answer
  • Simplify the expression:<br> 7r2+5r2+9r
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!