7B1%7D%7B2%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B8%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B16%7D%20%5Cdots%7D%20%7D%20%7D%20%7D%20%5C%3A%20%2B%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B4%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B8%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B16%7D%20%5Cdots%7D%20%7D%20%7D%20%7D%20%5Cright%29%20dx%20%5C%5C%20" id="TexFormula1" title=" \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ " alt=" \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ " align="absmiddle" class="latex-formula">
1 answer:
We have the identity
Take the square root of both sides and rearrange terms on the right to get
Decrementing n gives
and substituting the previous expression into this, we have
Continuing in this fashion, after k steps we would have
After a total of n - 2 steps, we arrive at
Then as n goes to infinity, the first nested radical converges to √x + 1/4. Similar reasoning can be used to show the other nested radical converges to √x - 1/4. Then the integral reduces to
You might be interested in
Answer:
Sid : [tied up] This is either really good or really bad.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Answer:
The area of a circle with a circumference of 4.6 is 1.684
Step-by-step explanation:
I think its that. Im not sure ;-;
Add the values, then you get the answer. 55+67 = ? 55 + 67 ------------ 122Final answer: $122 is how much Jordan has.