1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alja [10]
3 years ago
11

7B1%7D%7B2%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B8%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B16%7D%20%5Cdots%7D%20%7D%20%7D%20%7D%20%5C%3A%20%2B%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B4%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B8%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B16%7D%20%5Cdots%7D%20%7D%20%7D%20%7D%20%5Cright%29%20dx%20%5C%5C%20" id="TexFormula1" title=" \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ " alt=" \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ " align="absmiddle" class="latex-formula">
Mathematics
1 answer:
dlinn [17]3 years ago
5 0

We have the identity

\left(\sqrt x + \dfrac1{2^n}\right)^2 = x + \dfrac1{2^{n-1}} \sqrt x + \dfrac1{2^{2n}}

Take the square root of both sides and rearrange terms on the right to get

\sqrt x + \dfrac1{2^n} = \sqrt{x + \dfrac1{2^{n-1}} \left(\sqrt{x} + \dfrac1{2^{n+1}}\right)}

Decrementing n gives

\sqrt x + \dfrac1{2^{n-1}} = \sqrt{x + \dfrac1{2^{n-2}} \left(\sqrt{x} + \dfrac1{2^{n}}\right)}

and substituting the previous expression into this, we have

\sqrt x + \dfrac1{2^{n-1}} = \sqrt{x + \dfrac1{2^{n-2}} \sqrt{x + \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right) } }

Continuing in this fashion, after k steps we would have

\sqrt x + \dfrac1{2^{n-k}} = \sqrt{x + \dfrac1{2^{n-(k+1)}} \sqrt{x + \dfrac1{2^{n-k}} \sqrt{x + \dfrac1{2^{n-(k-1)}} \sqrt{\cdots \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right)}}}}

After a total of n - 2 steps, we arrive at

\sqrt x + \dfrac14 = \sqrt{x + \dfrac12 \sqrt{x + \dfrac1{2^2} \sqrt{x + \dfrac1{2^3} \sqrt{\cdots \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right)}}}}

Then as n goes to infinity, the first nested radical converges to √x + 1/4. Similar reasoning can be used to show the other nested radical converges to √x - 1/4. Then the integral reduces to

\displaystyle \int_e^{e^2} \left(\sqrt x - \frac14\right) + \left(\sqrt x + \frac14\right) \, dx = 2 \int_e^{e^2} \sqrt x \, dx = \boxed{\frac43 \left(e^3 - e^{\frac32}\right)}

You might be interested in
How do you find the value of x for this figure?
Studentka2010 [4]
The 2 lines intersect, and by definition it will create equal opposite angles.  Since we know that the angle created is 125 degrees, then the angle on the opposite side also must equal 125 degrees.  But wait, they broke up the angle into 2 angles made up of a 64 degree angle and an X degree angle.  These 2 angles must add up to 125 degrees.

x + 64 = 125
x = 125 - 64
x = 61 degrees
6 0
3 years ago
Given: x + 2 < -5. Choose the solution set.
OLEGan [10]

Answer:

x < -7

Step-by-step explanation:

to isolate x we need to subtract 2 from both sides. -5-2 is -7, so the answer is x < -7

4 0
3 years ago
Read 2 more answers
Please help ASAP.......
marta [7]

Answer:

The answer is x=10

Step-by-step explanation:

5/6x - 10 = 1/3x -5 multiple both sides by 6

5x - 60 = 2x -30 move the terms

5x - 2x = -30 +60

3x = 30 divide by 3

x = 10

3 0
3 years ago
Select the correct answer.
exis [7]
F(x)=2^x is the answer
5 0
3 years ago
Using appropriate properties find. 2/5×(-3/7)-1/6×3/2+1/14×2/5​
BigorU [14]
Not for sure but maybe, -0.39285714285 if it’s correct hope it helps!
7 0
3 years ago
Other questions:
  • A Chemist has 100g of 25% acid solution. How much of these solution he needs to drain and replace with 70% acid solution to obta
    8·2 answers
  • Information about the students at Jackson High School is shown in the table.
    7·2 answers
  • Please give me the answers or at least explain how I’m supposed to do it
    15·1 answer
  • The average wavelength in a series of ocean wave is 16.0m. A wave crest arrives at the shore on average every 10.0, so the frequ
    5·1 answer
  • WILL GIVE BRAINLIEST TO PERSON WHO ANSWERS CORRECTLY!!!!!! PLEASE HELP ASAP!!!!!
    13·1 answer
  • A student used formulas to make tables for f(x) and g(x). If the student wants to correctly illustrate that a quantity increasin
    12·1 answer
  • What is the solution to the system of equations?
    10·1 answer
  • Which is an irrational number
    9·1 answer
  • Help brainliest to who help
    14·1 answer
  • peaches are being sold go $2 per pound. The customer created a model to represent the total cost of peaches bought. if x represe
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!