1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alja [10]
2 years ago
11

7B1%7D%7B2%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B8%7D%20%5Csqrt%7Bx%20%2B%20%5Cfrac%7B1%7D%7B16%7D%20%5Cdots%7D%20%7D%20%7D%20%7D%20%5C%3A%20%2B%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B4%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B8%7D%20%5Csqrt%7Bx%20-%20%5Cfrac%7B1%7D%7B16%7D%20%5Cdots%7D%20%7D%20%7D%20%7D%20%5Cright%29%20dx%20%5C%5C%20" id="TexFormula1" title=" \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ " alt=" \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ " align="absmiddle" class="latex-formula">
Mathematics
1 answer:
dlinn [17]2 years ago
5 0

We have the identity

\left(\sqrt x + \dfrac1{2^n}\right)^2 = x + \dfrac1{2^{n-1}} \sqrt x + \dfrac1{2^{2n}}

Take the square root of both sides and rearrange terms on the right to get

\sqrt x + \dfrac1{2^n} = \sqrt{x + \dfrac1{2^{n-1}} \left(\sqrt{x} + \dfrac1{2^{n+1}}\right)}

Decrementing n gives

\sqrt x + \dfrac1{2^{n-1}} = \sqrt{x + \dfrac1{2^{n-2}} \left(\sqrt{x} + \dfrac1{2^{n}}\right)}

and substituting the previous expression into this, we have

\sqrt x + \dfrac1{2^{n-1}} = \sqrt{x + \dfrac1{2^{n-2}} \sqrt{x + \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right) } }

Continuing in this fashion, after k steps we would have

\sqrt x + \dfrac1{2^{n-k}} = \sqrt{x + \dfrac1{2^{n-(k+1)}} \sqrt{x + \dfrac1{2^{n-k}} \sqrt{x + \dfrac1{2^{n-(k-1)}} \sqrt{\cdots \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right)}}}}

After a total of n - 2 steps, we arrive at

\sqrt x + \dfrac14 = \sqrt{x + \dfrac12 \sqrt{x + \dfrac1{2^2} \sqrt{x + \dfrac1{2^3} \sqrt{\cdots \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right)}}}}

Then as n goes to infinity, the first nested radical converges to √x + 1/4. Similar reasoning can be used to show the other nested radical converges to √x - 1/4. Then the integral reduces to

\displaystyle \int_e^{e^2} \left(\sqrt x - \frac14\right) + \left(\sqrt x + \frac14\right) \, dx = 2 \int_e^{e^2} \sqrt x \, dx = \boxed{\frac43 \left(e^3 - e^{\frac32}\right)}

You might be interested in
What is the mean median mode and range of the numbers 31 28 30 31 30 ...?
mamaluj [8]
1. Mean is the number you get when you add all these numbers and then divide by the number of numbers. So, (31 + 28 + 30 + 31 + 30) / 5 = 150 / 5 = 30
2. The median is the middle number in the list of numbers, so, the answer is 30 as well.
3. Mode is the number that appears most often, so here it is 30 and 31 because they both appear 2 times.
4. Range is the difference between the largest and smallest number, so 31 - 28 = 3. 
5 0
2 years ago
What is the greatest common factor of 14 56 63?
olga55 [171]
14: 1 × 14
      2 × 7

56: 1 × 56
      2 × 28
      4 × 14
      7 × 8

63: 1 × 63
      3 × 21
      7 × 9
GCF(14, 56, 63) = 7
6 0
3 years ago
Simplify the following expression. show your work.<br> (-y + 5.3) + (7.2y - 9)
Kitty [74]

Answer:

6.2y - 3.7

Step-by-step explanation:

−y+5.3+7.2y−9

Subtract 9 from 5.3 to get −3.7.

−y−3.7+7.2y

Combine −y and 7.2y to get 6.2y.

6.2y−3.7

6 0
2 years ago
What are the values of x and y if this equation is true? 22(x+yi)+(28+4i)+72-62i
77julia77 [94]

Answer: x=2 and y=-3

Step-by-step explanation: you’re welcome

4 0
3 years ago
On a Saturday, a library checked out 52 books. If 24 of the books were fiction , what is the ratio if non-fiction books to ficti
vekshin1
I would guess 28 to 24
4 0
3 years ago
Read 2 more answers
Other questions:
  • It takes
    15·2 answers
  • Which of the following expressions has a coefficient of 10 and a constant of 5
    8·1 answer
  • Bricklayers use the formula N = 7LH to estimate the number of bricks N needed to build a wall of height H and length L. What is
    10·1 answer
  • Brianna went to a carnival. She played five games and rode six rides. Justin went to the same carnival and played seven games an
    13·2 answers
  • 5a+7=4a+4 solve for a.​
    15·2 answers
  • Can someone explain this to me pls
    14·1 answer
  • Find the measure of the central angle. Assume lines that appear to be diameters are.
    10·1 answer
  • Which expressions are equivalent to -90 – 60w?
    6·1 answer
  • Find the missing dimension of the triangle.<br> DETAILED EXPLANATION.
    5·2 answers
  • When you expand 2 (6x + 12), you get an answer of 12x + 24. How many other ways can
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!