We have been given that a person places $6340 in an investment account earning an annual rate of 8.4%, compounded continuously. We are asked to find amount of money in the account after 2 years.
We will use continuous compounding formula to solve our given problem as:
, where
A = Final amount after t years,
P = Principal initially invested,
e = base of a natural logarithm,
r = Rate of interest in decimal form.
Upon substituting our given values in above formula, we will get:
Upon rounding to nearest cent, we will get:
Therefore, an amount of $7499.82 will be in account after 2 years.
speed of current is 1.5 mi/hr
Answer:
let the rate in still water be x and rate of the current be y.
speed down the river is:
speed=distance/time
speed=14/2=7 mi/h
speed up the river is:
speed=(14)/(3.5)=4 mi/hr
thus total speed downstream and upstream will be:
x+y=7...i
x-y=4.......ii
adding the above equations i and ii we get:
2x=11
x=5.5 mi/hr
thus
y=5-5.5=1.5 mi/r
thus the speed in still waters is 5.5 mi/hr
speed of current is 1.5 mi/hr
The width is 11m and the length is 23m
Answer:
x = 14
Step-by-step explanation:
x- 9 = 5
Note the equal sign, what you do to one side, you do to the other. Isolate the variable, x. Add 9 to both sides of the equation:
x - 9 (+9) = 5 (+9)
x = 5 + 9
x = 14
x = 14 is your answer.
~
It’s less than 6 because 6x2:3 = 4