If you finish the question I may be able to answer it. ^^
Answer:
Total number of students = 360
Total number of girls = 120
Total number of boys = x / ?
120/240= 1/2
50%
Step-by-step explanation: To find out the percent of the boys you first
subtract the whole amount of students which is 360 students in total to the number of girls (120) resulting 240. 240 in ratio is 1/2. 1/2 is 50%.
(Not sure, if this helps or not. I try my best to answer questions to make the asker to understand! Sorry, I tried. :c)
Answer:
Given definite integral as a limit of Riemann sums is:
![\lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5E%7Bn%7D%20_%7Bi%3D1%7D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Step-by-step explanation:
Given definite integral is:

Substituting (2) in above
![f(x_{i})=\frac{1}{2}(4+\frac{3}{n}i)+(4+\frac{3}{n}i)^{3}\\\\f(x_{i})=(2+\frac{3}{2n}i)+(64+\frac{27}{n^{3}}i^{3}+3(16)\frac{3}{n}i+3(4)\frac{9}{n^{2}}i^{2})\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{3}{2n}i+\frac{144}{n}i+66\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{291}{2n}i+66\\\\f(x_{i})=3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=f%28x_%7Bi%7D%29%3D%5Cfrac%7B1%7D%7B2%7D%284%2B%5Cfrac%7B3%7D%7Bn%7Di%29%2B%284%2B%5Cfrac%7B3%7D%7Bn%7Di%29%5E%7B3%7D%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%282%2B%5Cfrac%7B3%7D%7B2n%7Di%29%2B%2864%2B%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B3%2816%29%5Cfrac%7B3%7D%7Bn%7Di%2B3%284%29%5Cfrac%7B9%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%29%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B108%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B3%7D%7B2n%7Di%2B%5Cfrac%7B144%7D%7Bn%7Di%2B66%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B108%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B291%7D%7B2n%7Di%2B66%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Riemann sum is:
![= \lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5E%7Bn%7D%20_%7Bi%3D1%7D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Answer:
GIVE ME YOUR POINNTTSSSSSSSSSSSSSSSSSSSSSSSS
Step-by-step explanation:
no
Answer:
Answer is A.
Step-by-step explanation:
I'm pretty sure lmk if I'm wrong.