Xy is the GCF of these expressions
Answer:
5 days
Step-by-step explanation:
Sohan can do the whole thing in 10 days
he worked 5 days so he did half
and Mohan did the other half in 5 days
so their speeds are same
so if they worked together they'd do it in half the time
i.e 5 days
I assume you're supposed to establish the identity,
cos(A) cos(2A) cos(4A) = 1/8 sin(8A) / sin(A)
Recall the double angle identity for sine:
sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)
Then you have
sin(8A) = 2 sin(4A) cos(4A)
sin(8A) = 4 sin(2A) cos(2A) cos(4A)
sin(8A) = 8 sin(A) cos(A) cos(2A) cos(4A)
==> sin(8A)/(8 sin(A)) = cos(A) cos(2A) cos(4A)
as required.
Answer:
2.87%
Step-by-step explanation:
We have the following information:
mean (m) = 200
standard deviation (sd) = 50
sample size = n = 40
the probability that their mean is above 21.5 is determined as follows:
P (x> 21.5) = P [(x - m) / (sd / n ^ (1/2))> (21.5 - 200) / (50/40 ^ (1/2))]
P (x> 21.5) = P (z> -22.57)
this value is very strange, therefore I suggest that it is not 21.5 but 215, therefore it would be:
P (x> 215) = P [(x - m) / (sd / n ^ (1/2))> (215 - 200) / (50/40 ^ (1/2))]
P (x> 215) = P (z> 1.897)
P (x> 215) = 1 - P (z <1.897)
We look for this value in the attached table of z and we have to:
P (x> 215) = 1 - 0.9713 (attached table)
P (x> 215) =.0287
Therefore the probability is approximately 2.87%
The logic is there are six sides to each die, so for each number on one die you can pair with six different numbers on the other die. Therefore, the probability of rolling a prime number on two dice is 15/36, which reduces to 5/12.