Condene the logarithms on the left side by applying the property, ln(<em>a</em>) - ln(<em>b</em>) = ln(<em>a</em> / <em>b</em>):
ln(<em>x</em> - 2) - ln(<em>x</em> - 3) = 1
→ ln((<em>x</em> - 2) / (<em>x</em> - 3)) = 1
Now take the exponential of both sides:
exp(ln((<em>x</em> - 2) / (<em>x</em> - 3))) = exp(1)
(<em>x</em> - 2) / (<em>x</em> - 3) = <em>e</em>
Solve for <em>x</em> :
<em>x</em> - 2 = <em>e</em> (<em>x</em> - 3)
<em>x</em> - 2 = <em>e x</em> - 3<em>e</em>
<em>x</em> - <em>e x</em> = 2 - 3<em>e</em>
(1 - <em>e</em>) <em>x</em> = 2 - 3<em>e</em>
<em>x</em> = (2 - 3<em>e</em>) / (1 - <em>e</em>) ≈ 3.582
Answer:
Y =
+ 2.5
Step-by-step explanation:
This is the only valid answer for the slope.
Slope = 
Isolate the variable by dividing each side by factors that don't contain the variable.
a=- \frac{ x^{2}- \sqrt{( x^{3} + x^{2} b+12x-72(x-2)-2x} }{x-2} ,- \frac{ x^{2}+ \sqrt{( x^{3} + x^{2} b+12x-72(x-2)-2x} }{x-2}
Solve for b by simplifying both sides of the equation then isolating the variable.
b= \frac{12}{x}+ \frac{72}{ x^{2} }-2+2a- \frac{4a}{x}+ \frac{ a^{2} }{x}- \frac{2a^{z} }{ x^{2} }
Hopefully i helped ^.^ Mark brainly if possible. Lol once again i saw the same question so why not answer it again!
Answer:
answer is A
Step-by-step explanation: