Answer:
Charlie has used his phone in a month for at least 1404 minutes
Step-by-step explanation:
In order to solve this problem, we must first determine what will our variable be and what it will represent.
Let's say our variable is x and it will represent the number of minutes Charlie has used his phone.
After we set our variable up, we can set our equation up. The problem states that Charlie will pay a monthly fee of $18 and additional $0.06 per minute of use. The $18 is what is called a fixed cost and the $0.06 is the variable cost, which will depend on our variable x (the number of minutes spent). Taking this into account we can build an inequality that will represent the amount of money spent in a month, which will look like this:

so now we can solve that inequality for x, we can start by subtracting 18 from both sides, so we get.

Next, we can divide both sides of the inequality by 0.06 so we get:

so that's where the answer came from. Charly has used an amount of at least 1404 minutes
58 - 47 = 11
(written out in spoken words)
fifty-eight minus forty-seven equals eleven
Hope this helps!
Given:
Volume of cuboid container = 2 litres
The container has a square base.
Its height is double the length of each edge on its base.
To find:
The height of the container.
Solution:
We know that,
1 litre = 1000 cubic cm
2 litre = 2000 cubic cm
Let x be the length of each edge on its base. Then the height of the container is:

The volume of a cuboid is:

Where, l is length, w is width and h is height.
Putting
, we get


Divide both sides by 2.

Taking cube root on both sides.
![\sqrt[3]{1000}=x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1000%7D%3Dx)

Now, the height of the container is:



Therefore, the height of the container is 20 cm.
Answer : I’ll say it’s B.
If it’s wrong sorry. I tried.
I can help you but i cant see with the reflection thingy