Answer:
726.572699
Step-by-step explanation:
According to differentials
(x+Δx)³ = x³ + 3x²Δx + 3x(Δx)² + (Δx)³ (Using binomial expansion)
Using this formula to solve (8.99)³, this can also be written as;
(8.99)³ = (9-0.01)³ where
x = 9
Δx = -0.01
Substitute this vales into the differential expression above
(9+(-0.01))³ = 9³ + 3(9)²(-0.01) + 3(9)(-0.01)² + (-0.01)³
(9+(-0.01))³ = 729 + (243)(-0.01) + 27(0.0001) + (-0.000001)
(9+(-0.01))³ = 729-2.43+0.0027-0.000001
(9+(-0.01))³ = 729-2.43+0.0027-0.000001
(9+(-0.01))³ = 726.572699
Hence 8.99³ = 726.572699 (Using differential)
Using calculator;
8.99³ = 726.572699
C is tevanswer out I think so
Split the second term in 3a^2 - 8a + 4 into two terms
3a^2 - 2a - 6a + 4 = 0
Factor out common terms in the first two terms, then in the last two terms.
a(3a - 2) -2(3a - 2) = 0
Factor out the common term 3a - 2
(3a - 2)(a - 2) = 0
Solve for a;
a = 2/3,2
<u>Answer : B. (2/3,2)</u>
1) Cancel out the common factor which in this case is 8 
2)First apply exponent rule
now cancel out the common factors which are n and n+7 leaving you with 
3)Factorize
cancel out the common factor in this case x+2 leaving you with 
4) Factorize
cancel out the common factor in this case 3w-1 leaving you with 
5) In the picture
6)In the picture
I am REALLY tired sorry I wont be able to do the rest, I hope these are helpful :)
-6x is the correct answer