Problem One
Call the radius of the second can = r
Call the height of the second can = h
Then the radius of the first can = 1/3 r
The height of the first can = 3*h
A1 / A2 = (2*pi*(1/3r)*(3h)] / [2*pi * r * h]
Here's what will cancel. The twos on the right will cancel. The 3 and 1/3 will multiply to one. The 2 r's will cancel. The h's will cancel. Finally, the pis will cancel
Result A1 / A2 = 1/1
The labels will be shaped differently, but they will occupy the same area.
Problem Two
It seems like the writer of the problem put some lids on the new solid that were not implied by the question.
If I understand the problem correctly, looking at it from the top you are sweeping out a circle for the lid on top and bottom, plus the center core of the cylinder.
One lid would be pi r^2 = pi w^2 and so 2 of them would be 2 pi w^2
The region between the lids would be 2 pi r h for the surface area which is 2pi w h
Put the 2 regions together and you get
Area = 2 pi w^2 + 2 pi w h
Answer: Upper left corner <<<<< Answer
In order to answer the above question, you should know the general rule to solve these questions.
The general rule states that there are 2ⁿ subsets of a set with n number of elements and we can use the logarithmic function to get the required number of bits.
That is:
log₂(2ⁿ) = n number of <span>bits
</span>
a). <span>What is the minimum number of bits required to store each binary string of length 50?
</span>
Answer: In this situation, we have n = 50. Therefore, 2⁵⁰ binary strings of length 50 are there and so it would require:
log₂(2⁵⁰) <span>= 50 bits.
b). </span><span>what is the minimum number of bits required to store each number with 9 base of ten digits?
</span>
Answer: In this situation, we have n = 50. Therefore, 10⁹ numbers with 9 base ten digits are there and so it would require:
log2(109)= 29.89
<span> = 30 bits. (rounded to the nearest whole #)
c). </span><span>what is the minimum number of bits required to store each length 10 fixed-density binary string with 4 ones?
</span>
Answer: There is (10,4) length 10 fixed density binary strings with 4 ones and
so it would require:
log₂(10,4)=log₂(210) = 7.7
= 8 bits. (rounded to the nearest whole #)
It equals 0.1365853659
you may round as needed
Answer:
72
Step-by-step explanation:
1 out of 10 do not recommend naps, so 9 times as many do recommend naps.
9 × (8 doctors) = 72 doctors . . . . . recommend naps
Answer:
The first piece is 19 inches, the second is 52, and the third piece is 57.
Step-by-step explanation:
Solve for x using (x) + (x + 33) + (3x) = 128.