Answer:
hey how u doin
Step-by-step explanation:
the perimeter will then just be the sum of the distances of A, B and C, namely AB + BC + CA.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-2})\qquadB(\stackrel{x_2}{0}~,~\stackrel{y_2}{5})\qquad \qquadd = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}\\\\\\AB=\sqrt{[0-(-2)]^2+[5-(-2)]^2}\implies AB=\sqrt{(0+2)^2+(5+2)^2}\\\\\\AB=\sqrt{4+49}\implies \boxed{AB=\sqrt{53}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\B(\stackrel{x_2}{0}~,~\stackrel{y_2}{5})\qquad C(\stackrel{x_1}{3}~,~\stackrel{y_1}{1})\\\\\\BC=\sqrt{(3-0)^2+(1-5)^2}\implies BC=\sqrt{3^2+(-4)^2}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%5C%5CA%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5CqquadB%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquadd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%5C%5C%5C%5C%5C%5CAB%3D%5Csqrt%7B%5B0-%28-2%29%5D%5E2%2B%5B5-%28-2%29%5D%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B%280%2B2%29%5E2%2B%285%2B2%29%5E2%7D%5C%5C%5C%5C%5C%5CAB%3D%5Csqrt%7B4%2B49%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B53%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5CB%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_1%7D%7B3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5C%5C%5C%5C%5C%5CBC%3D%5Csqrt%7B%283-0%29%5E2%2B%281-5%29%5E2%7D%5Cimplies%20BC%3D%5Csqrt%7B3%5E2%2B%28-4%29%5E2%7D)
![\bf BC=\sqrt{9+16}\implies \boxed{BC=5}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\C(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-2})\\\\\\CA=\sqrt{(-2-3)^2+(-2-1)^2}\implies CA=\sqrt{(-5)^2+(-3)^2}\\\\\\CA=\sqrt{25+9}\implies \boxed{CA=\sqrt{34}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\~\hfill \stackrel{AB+BC+CA}{\approx 18.11}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20BC%3D%5Csqrt%7B9%2B16%7D%5Cimplies%20%5Cboxed%7BBC%3D5%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5CC%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%5Cqquad%20A%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5C%5C%5C%5C%5C%5CCA%3D%5Csqrt%7B%28-2-3%29%5E2%2B%28-2-1%29%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B%28-5%29%5E2%2B%28-3%29%5E2%7D%5C%5C%5C%5C%5C%5CCA%3D%5Csqrt%7B25%2B9%7D%5Cimplies%20%5Cboxed%7BCA%3D%5Csqrt%7B34%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C~%5Chfill%20%5Cstackrel%7BAB%2BBC%2BCA%7D%7B%5Capprox%2018.11%7D~%5Chfill)
Step-by-step explanation:
the answer is In photo above
Answer:
The reduced row-echelon form of the linear system is ![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&0\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%260%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We will solve the original system of linear equations by performing a sequence of the following elementary row operations on the augmented matrix:
- Interchange two rows
- Multiply one row by a nonzero number
- Add a multiple of one row to a different row
To find the reduced row-echelon form of this augmented matrix
![\left[\begin{array}{cccc}2&3&-1&14\\1&2&1&4\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D2%263%26-1%2614%5C%5C1%262%261%264%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
You need to follow these steps:
- Divide row 1 by 2

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\1&2&1&4\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C1%262%261%264%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 1 from row 2

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\0&1/2&3/2&-3\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C0%261%2F2%263%2F2%26-3%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 1 multiplied by 5 from row 3

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\0&1/2&3/2&-3\\0&3/9&9/2&-28\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%263%2F9%269%2F2%26-28%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 2 multiplied by 3 from row 1

![\left[\begin{array}{cccc}1&0&-5&16\\0&1/2&3/2&-3\\0&3/9&9/2&-28\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%263%2F9%269%2F2%26-28%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 2 multiplied by 3 from row 3

![\left[\begin{array}{cccc}1&0&-5&16\\0&1/2&3/2&-3\\0&0&0&-19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%260%260%26-19%5Cend%7Barray%7D%5Cright%5D)
- Multiply row 2 by 2

![\left[\begin{array}{cccc}1&0&-5&16\\0&2&3&-6\\0&0&0&-19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%262%263%26-6%5C%5C0%260%260%26-19%5Cend%7Barray%7D%5Cright%5D)
- Divide row 3 by −19

![\left[\begin{array}{cccc}1&0&-5&16\\0&2&3&-6\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%262%263%26-6%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 3 multiplied by 16 from row 1

![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&-6\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%26-6%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Add row 3 multiplied by 6 to row 2

![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&0\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%260%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)