1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
6

The surface area "S" of a cube with side length e is S= 6e^2.

Mathematics
1 answer:
LuckyWell [14K]3 years ago
8 0
Just plug in the numbers.
S=6e^2
150=6e^2     divide by 6 to both sides
25=e^2         take the square root of both sides
e=5
You might be interested in
Use the tax tables to determine the tax for the given filing status and taxable income amount:
NeX [460]

Answer:

i cant even see the picture

7 0
2 years ago
ASAP brainliest if right
kifflom [539]

Answer:

option A

Step-by-step explanation:

y = k . f( x )

• if k > 1, the graph of y = k•f (x) is the graph of f (x) vertically stretched by multiplying each of its y-coordinates by k.

• if 0 < k < 1 (a fraction), the graph is f (x) vertically shrunk (or compressed) by multiplying each of its y-coordinates by k.

• if k < 0, the vertical stretch or shrink is followed by a reflection across the x-axis.

Given g(x ) = - |x |

                = -1 × f(x)

k < 0 , therefore the graph g (x) is a vertical shrink ( or compression ) of graph f

5 0
2 years ago
<img src="https://tex.z-dn.net/?f=%7B%5Chuge%7B%5Cunderline%7B%5Csmall%7B%5Cmathbb%7B%5Cpink%7BREFER%20%5C%20TO%20%5C%20THE%20%5
marusya05 [52]

Answer:

See below

(B) and (C) are correct.

Step-by-step explanation:

We have the following limit

$\lim \limits_{n\rightarrow \infty} \left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} }, \forall x>0$

I am not sure about methods concerning the quotient, but in this type of question I would try to convert this limit into integration.

Considering the numerator, we have

$(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right) = \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)$

- I didn't forget about n^n

Considering the denominator, we have

$(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right) = \prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)$

- I didn't forget about n!

Therefore,

$\left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} } = \left(\dfrac{n^2 \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)}{ n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)} \right)$

$= \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}$

Now we have

$\lim \limits_{n\rightarrow \infty}  \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}, \forall x>0$

This is just the notation change so far.

What I want to do here is apply definite integrals using Riemann Integrals (We will write the limit as an definite integral). A nice way to do it is using logarithms. Therefore, we can apply the natural logarithm in both sides.

Now, recall two properties of logarithms:

\boxed{\log_a mn = \log_a m + \log_a n}

\boxed{\log_a m^p = p\log_a m}

\boxed{\log_a  \left(\dfrac{m}{n} \right) = \log_a m- \log_a n}

Thus,

$\ln f(x) = \lim \limits_{n\rightarrow \infty}  \ln \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}} $

$= \lim \limits_{n\rightarrow \infty}   \dfrac{x}{n}\ln\left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right) $

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  \left(n^n \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)  \right)-\ln  \left( n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)  \right) \right]$

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  n^n + \prod_{k=1}^n  \ln \left(x+\dfrac{n}{k}  \right)-\ln  n! -\prod_{k=1}^n  \ln\left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Considering

$\lim \limits_{n\rightarrow \infty} \frac{x}{n} (\ln n^n - \ln  n! ) = \lim \limits_{n\rightarrow \infty} \frac{x}{n} (n\ln n - \ln  n! )= \lim \limits_{n\rightarrow \infty} \frac{x \cdot\ln\frac{n^n}{n!} }{n} $

Using Stirling's formula

$\dfrac{n^n}{n!}\underset{\infty}{\sim} \dfrac{n^n}{\sqrt{2n \pi}\left(\dfrac{n}{e}\right)^n}=\dfrac{e^n}{\sqrt{2n \pi}}$

then

$\ln\left(\frac{n^n}{n!}\right)\underset{\infty}{=}n\ln\left(e\right)-\frac{1}{2}\ln\left(2n\pi\right)+o\left(1\right)$

$\implies \frac{\ln\left(\frac{n^n}{n!}\right)}{n}=1-\frac{\ln(2n\pi)}{2n}+o\left(1\right)$

This shows our limit equals 1 as $\frac{\log(2\pi n)}{2n} \rightarrow 0$ and \ln(e)=1

Employing a Riemann sum in the main limit, we have

$= \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[ \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  - \sum_{k=1}^n\ln \left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Now dividing the terms inside the parenthesis by \dfrac{n}{k} in \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)

we have

$\sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  = \sum_{k=1}^n \ln \left(\frac{kx}{n} +1\right) $

Now dividing the terms inside the parenthesis by \dfrac{n^2}{k^2} in \sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)

we have

$\sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)  = \sum_{k=1}^n \ln \left(\frac{(kx)^2}{n^2} +1\right) $

Therefore

$= \frac xn\sum_{k=1}^n\ln\dfrac{z+1}{z^2+1}$

for \dfrac{kx}{n}  = z

Using Riemann Integral,

$\lim \limits_{n\rightarrow \infty}  \int_0^1\ln\frac{z+1}{z^2+1}dz$

From

$\frac{f'(x)}{f(x)}=\ln\frac{z+1}{z^2+1}$

We can see that the function is increasing for , but because of the denominator, it is negative for .

Therefore,

(A) is false because \dfrac{1}{2} < 1

(B) is true because

(C) is true the slope is negative at that point

(D) is false, just consider $\ln\frac{z+1}{z^2+1}$ for z=1 and z=2

7 0
2 years ago
) Trong số 45 học sinh của lớp 10A có 15 bạn xếp loại học lực giỏi, 20 bạn xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa học lự
pychu [463]

Answer:

20 học sinh

Step-by-step explanation:

8 0
2 years ago
Which of the following values cannot be​ probabilities? 3/5​, 5/3​, 0​, 1​, 1.15​, StartRoot 2 , -0.57​, 0.09
Ugo [173]

Answer:

\sqrt{2},-0.57

Step-by-step explanation:

Probability of any incidence can only be a rational number.

Porbability can never be less than zero. It is basically defined as the ratio of

chance of occurence of an event to the total possible ways of occurence of the event. So an event cannot occur and the probability can be zero but never negative.

\sqrt{2} being a irrational number cannot be a possibkle vlue for probability.

Hence values which cannot be possible are \sqrt{2},-0.57.

7 0
3 years ago
Other questions:
  • Using repeated addition solve 5x4
    5·1 answer
  • Which of the following expressions is equivalent to 3?
    9·1 answer
  • What is the answer in simplest term?
    12·2 answers
  • A number divided by 5 is 22 find the number
    11·2 answers
  • The distance traveled (in feet) by the three-toed sloth can be modeled by f(s) =2.3s, where s is the time in minutes. Find the d
    7·1 answer
  • Pls helppp will mark brainliest
    15·1 answer
  • What is an equation that can be written with 10x+5y=20 to form a pair of linear equations
    8·1 answer
  • Determining When a Function is increasing or Decreasing
    14·1 answer
  • Please, please help me!
    10·2 answers
  • A cylinder with a volume of 45 cubic inches has a radius of three inches
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!