Answer:
(-4, -3), (4, -1), (8, 0), (12, 1)
Step-by-step explanation:
The x- and corresponding y-values are listed in the table. Put each pair in parentheses, <em>x-value first</em>. (That is an <em>ordered pair</em>.)
(x, y) = (-4, -3) . . . . from the first table entry
(x, y) = (4, -1) . . . . from the second table entry
(x, y) = (8, 0) . . . . from the third table entry
(x, y) = (12, 1) . . . . from the last table entry
Sum of two monomials is not necessarily always a monomial.
For example:
Suppose we have two monomials as 2x and 5x.
Adding 2x+5x , we get 7x.
So if two monomials are both like terms then their sum will be a monomial.
Suppose we have two monomials as 3y and 4x
Now these are both monomials but unlike, so we cannot add them together and sum would be 3y + 4x , which is a binomial.
So if we have like terms then the sum is monomial but if we have unlike terms sum is binomial.
Product of monomials:
suppose we have 2x and 5y,
Product : 2x*5y = 10xy ( which is a monomial)
So yes product of two monomials is always a monomial.
Answer:
348 miles
Step-by-step explanation:
24 multiplied by 14.5 equals 348
Answer:
c.16
Step-by-step explanation:
hjdjfjnfmforoeofmg