So first step is to simplify everything outside of the radicals.
6*2=12
:. The expression is
__ __
12*\| 8 * \| 2
Now we know that
__ __ __
\| 8 = \| 4 * \| 2
And
__ __
\| 2 * \| 2 = 2
And
__
\| 4 = 2
So if we incorporate what we know into the equation, we can figure it out.
So let's first expand the radical 8.
__ __ __
12*\| 4 * \| 2 * \| 2
Now by simplifying the radical four and combining the radical twos, we can get all whole numbers.
12*2*2
Which equals 48.
Answer:48
Answer:
inequality is n< with the line under 12 or n= , with the line under it 12
Step-by-step explanation:
C = 3b+2d is the same as 3b+2d = C
Let's isolate d. To do this, we first need to subtract 3b from both sides
3b+2d = C
3b+2d-3b = C-3b
2d = C-3b
Then divide both sides by 2
2d = C-3b
2d/2 = (C-3b)/2
d = (C-3b)/2
Take note of the parenthesis as they are very important. We want to divide ALL of C-3b over 2. We don't want to just divide -3b over 2.
The answer choices you have aren't 100% clear but I have a feeling your teacher meant to say d = (C-3b)/2 instead of d = C-3b/2 for choice A
If that assumption is correct, then the answer is choice A.
The equation 3y = x + 1 would graph a line parallel to 3y = x + 5 ⇒ 1st
Step-by-step explanation:
Parallel lines have same slopes and different y-intercepts
To find which equation would graph a line parallel to 3y = x + 5
1. Put the equation in the form of y = mx + c
2. m is the slope of the line and c is the y-intercept
3. Look for the equation which has the same values of m and different
values of c
∵ 3y = x + 5
- Divide each term of the equation by 3 to put the equation in the
form of y = mx + c
∴ y =
x + 
∴ m = 
∴ c = 
The first answer:
∵ 3y = x + 1
- Divide each term of the equation by 3
∴ y =
x + 
∴ m = 
∴ c = 
∵ The two equations have same slope m = 
∵ The two equations have different y-intercepts c = 
and c = 
∴ 3y = x + 5 and 3y = x + 1 represent two parallel lines
The equation 3y = x + 1 would graph a line parallel to 3y = x + 5
Learn more:
You can learn more about slope of a line in brainly.com/question/12954015
#LearnwithBrainly