1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lapatulllka [165]
3 years ago
7

Solve the equation -9x+1=-x+17​

Mathematics
2 answers:
Greeley [361]3 years ago
8 0

Answer: b

Step-by-step explanation:

Step2247 [10]3 years ago
5 0

Answer:

x=-2

Step-by-step explanation:

-9x+1=-x+17

Add 9x on both sides:

     1=8x+17

Subtract 17 on both sides:

   -16=8x

Divide both sides by 8:

     -2=x

Check x=-2!

-9x+1=-x+17     with x=-2

-9(-2)+1=-(-2)+17

18+1=2+17

19=19

19=19 is a true equation so x=-2 is correct.

You might be interested in
Solve these recurrence relations together with the initial conditions given. a) an= an−1+6an−2 for n ≥ 2, a0= 3, a1= 6 b) an= 7a
8_murik_8 [283]

Answer:

  • a) 3/5·((-2)^n + 4·3^n)
  • b) 3·2^n - 5^n
  • c) 3·2^n + 4^n
  • d) 4 - 3 n
  • e) 2 + 3·(-1)^n
  • f) (-3)^n·(3 - 2n)
  • g) ((-2 - √19)^n·(-6 + √19) + (-2 + √19)^n·(6 + √19))/√19

Step-by-step explanation:

These homogeneous recurrence relations of degree 2 have one of two solutions. Problems a, b, c, e, g have one solution; problems d and f have a slightly different solution. The solution method is similar, up to a point.

If there is a solution of the form a[n]=r^n, then it will satisfy ...

  r^n=c_1\cdot r^{n-1}+c_2\cdot r^{n-2}

Rearranging and dividing by r^{n-2}, we get the quadratic ...

  r^2-c_1r-c_2=0

The quadratic formula tells us values of r that satisfy this are ...

  r=\dfrac{c_1\pm\sqrt{c_1^2+4c_2}}{2}

We can call these values of r by the names r₁ and r₂.

Then, for some coefficients p and q, the solution to the recurrence relation is ...

  a[n]=pr_1^n+qr_2^n

We can find p and q by solving the initial condition equations:

\left[\begin{array}{cc}1&1\\r_1&r_2\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right]

These have the solution ...

p=\dfrac{a[0]r_2-a[1]}{r_2-r_1}\\\\q=\dfrac{a[1]-a[0]r_1}{r_2-r_1}

_____

Using these formulas on the first recurrence relation, we get ...

a)

c_1=1,\ c_2=6,\ a[0]=3,\ a[1]=6\\\\r_1=\dfrac{1+\sqrt{1^2+4\cdot 6}}{2}=3,\ r_2=\dfrac{1-\sqrt{1^2+4\cdot 6}}{2}=-2\\\\p=\dfrac{3(-2)-6}{-5}=\dfrac{12}{5},\ q=\dfrac{6-3(3)}{-5}=\dfrac{3}{5}\\\\a[n]=\dfrac{3}{5}(-2)^n+\dfrac{12}{5}3^n

__

The rest of (b), (c), (e), (g) are solved in exactly the same way. A spreadsheet or graphing calculator can ease the process of finding the roots and coefficients for the given recurrence constants. (It's a matter of plugging in the numbers and doing the arithmetic.)

_____

For problems (d) and (f), the quadratic has one root with multiplicity 2. So, the formulas for p and q don't work and we must do something different. The generic solution in this case is ...

  a[n]=(p+qn)r^n

The initial condition equations are now ...

\left[\begin{array}{cc}1&0\\r&r\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right]

and the solutions for p and q are ...

p=a[0]\\\\q=\dfrac{a[1]-a[0]r}{r}

__

Using these formulas on problem (d), we get ...

d)

c_1=2,\ c_2=-1,\ a[0]=4,\ a[1]=1\\\\r=\dfrac{2+\sqrt{2^2+4(-1)}}{2}=1\\\\p=4,\ q=\dfrac{1-4(1)}{1}=-3\\\\a[n]=4-3n

__

And for problem (f), we get ...

f)

c_1=-6,\ c_2=-9,\ a[0]=3,\ a[1]=-3\\\\r=\dfrac{-6+\sqrt{6^2+4(-9)}}{2}=-3\\\\p=3,\ q=\dfrac{-3-3(-3)}{-3}=-2\\\\a[n]=(3-2n)(-3)^n

_____

<em>Comment on problem g</em>

Yes, the bases of the exponential terms are conjugate irrational numbers. When the terms are evaluated, they do resolve to rational numbers.

6 0
3 years ago
Select all the expressions that hace a value of 28:
laila [671]

Answer:

616/22 = 28

784/28 = 28

Step-by-step explanation:

5 0
2 years ago
The average speed of a golden eagle is 30 mph and the average speed of a peregrine falcon is 48 mph. How far will the peregrine
Oliga [24]

Answer:

53 1/3 miles.

Step-by-step explanation:

Well the eagle would take 1 1/3 of an hour to fly 40 miles, so you multiply 1 1/3 to 48 to get your answer.

5 0
3 years ago
Read 2 more answers
What’s equivalent (2x^5)^3
Over [174]

Answer:

8x^15

Step-by-step explanation:

(2x5)3

=(2x5)3

=2x5*2x5*2x5

=8x15

6 0
3 years ago
Of the marbles in a bag 5 are red 4 are yellow and 4 are blue Sandra will randomly choose one marble from the bag fill in the bl
timurjin [86]

Answer:

A. 4/13

B. Likely.

4 0
3 years ago
Other questions:
  • Qhich equation is the inverse of y=9x^2-4
    14·1 answer
  • Which of the following is equivalent to the equation -5(3x -8 )= -45 ?
    7·1 answer
  • A coat the usually cost $123 is marked 1/3 off. What is the sales price of the coat?
    14·2 answers
  • In 1999 bus fare in atlanta was 4.70.In 1979 the fare was 2/5 of the fare in 1999 what was the fare in 1979
    5·2 answers
  • In how many ways can you seat 5 women and 5 men in a row if women must seat next to each other,men must seat next to each other,
    7·1 answer
  • Please help find slope of the line!
    5·1 answer
  • What is the domain of the function Y equals square root X
    8·1 answer
  • Does a altitude of a triangle divides the triangle into two equal halves??​
    15·1 answer
  • Which rate is the lowest price?
    6·2 answers
  • Convert the units of capacity. 1gal 1qt 2cups to fl oz.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!