1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
monitta
2 years ago
13

A 50-gal tank initially contains 10 gal of fresh water. At t = 0, a brine solution

Mathematics
1 answer:
scZoUnD [109]2 years ago
5 0

\huge \mathbb{SOLUTION:}

\begin{array}{l} \textsf{Let }A(t)\textsf{ be the function which gives the amount} \\ \textsf{of the salt dissolved in the liquid in the tank at} \\ \textsf{any time }t. \textsf{ We want to develop a differential} \\ \textsf{equation that, when solved, will give us an} \\ \textsf{expression for }A(t). \\ \\ \textsf{The basic principle determining the differential} \\ \textsf{equation is} \\ \\ \end{array}

\boxed{ \footnotesize \begin{array}{l} \qquad\quad \quad\Large{\dfrac{dA}{dt} = R_{in} - R_{out}} \\ \\ \textsf{where:} \\ \\ \begin{aligned} \bullet\: R_{in} &= \textsf{rate of the salt entering} \\ &= \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt inflow}\end{array}}\right) \times \small(\textsf{Input of brine}) \\ \\ \bullet\: R_{out} &= \textsf{rate of the salt leaving} \\ &= \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt outflow}\end{array}}\right) \times \small(\textsf{Output of brine}) \end{aligned} \end{array}} \\ \\

\begin{array}{l} \textsf{On the problem, the amount of salt in the tank,} \\ A(t), \textsf{changes overtime is given by the differential} \\ \textsf{equation}  \\ \\ \footnotesize A'(t) = \left(\dfrac{4\ \textsf{gal}}{1\ \textsf{min}}\right)\!\!\left(\dfrac{1\ \textsf{lb}}{1\ \textsf{gal}}\right) - \left(\dfrac{2\ \textsf{gal}}{1\ \textsf{min}}\right)\!\!\left(\dfrac{A(t)\ \textsf{lb}}{10 + (4 - 2)t\ \textsf{gal}}\right) \\ \\ \textsf{There's no salt in the tank (fresh water) at the} \\ \textsf{start, so }A(0) = 0. \textsf{ The amount of solution in the} \\ \textsf{tank is given by }10 + (4 -2)t, \textsf{so the tank will} \\ \textsf{overflow once this expression is equal to the total} \\ \textsf{volume or capacity of the tank.} \\ \\ 10 + (4 - 2)t = 50 \\ \\ \textsf{Solving for }t,\textsf{ we get} \\ \\ \implies \boxed{t = 20\textsf{ mins}} \\ \\ A'(t) = 4 - \dfrac{2A(t)}{10 + 2t} \\ \\ A'(t) = 4 - \dfrac{1}{5 + t} A(t) \\ \\ A'(t) + \dfrac{1}{5 + t} A(t) = 4 \\ \\ \textsf{This is a linear ODE with integrating factor} \\ \mu (t) = e^{\int \frac{1}{5 + t}\ dt} = e^{\ln |5 + t|} = 5 + t \\ \\ \textsf{Multiplying this to the ODE, we get} \\ \\ (5 + t)A'(t) + A(t) = 4(5 + t) \\ \\ [(5 + t)A(t)]' = 20 + 4t \\ \\ (5 + t)A(t) = 20t + 2t^2 + C \\ \\ \textsf{Since }A(0) = 0, \textsf{ we get } C = 0. \\ \\ A(t) = \dfrac{2t^2 + 20t}{t + 5} \\ \\ A(t) = 2t + 10 - \dfrac{50}{t + 5} \\ \\ \textsf{So the function that gives the amount of salt at} \\ \textsf{any given time }t,\textsf{ is given by} \\ \\ \implies A(t) = 2t + 10 - \dfrac{50}{t + 5} \\ \\ \textsf{The amount of salt in the tank at the moment} \\ \textsf{of overflow or at }t = 20\textsf{ mins is equal to} \\ \\ A(20) = 2(20) + 10 - \dfrac{50}{20 + 5} \\ \\ \implies \boxed{A = 48\ \textsf{gallons}} \end{array}

\Large \mathbb{ANSWER:}

\qquad\red{\boxed{\begin{array}{l} \textsf{a. }20\textsf{ mins} \\ \\ \textsf{b. }48\textsf{ gallons}\end{array}}}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

You might be interested in
PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PL
nikdorinn [45]

b

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
If sin θ=4/5 and 90°<θ<180°, what is cos θ?
34kurt

Answer:

Cos ∅ = 3/5

BUT COSINE IS NEGATIVE IN THE SECOND QUADRANT.

Thus cos∅= -3/5

7 0
3 years ago
Which equation is correctly rewritten to solve for x?<br><br> x/r - s = t
wolverine [178]

Answer:

x = r(t + s)               (second option)

Step-by-step explanation:

First add s to both sides and get x/r = t + s.

Then mutiply both sides by r to separate x and this is the final equation:

x = r(t + s)

5 0
2 years ago
Pls help i will give 15 brainly points<br><br>Solve for 0​
ioda

Answer:

24.15°

Step-by-step explanation:

sinΦ = 18/44

Φ= 24.15°

8 0
3 years ago
Work out the value of x <br>​
GREYUIT [131]
A full circle is 360°.

x + 3x + 90° = 360°

4x = 360° - 90°

4x = 270°

4x/4 = 270°/4

x = 67.5°

Hope it helps! Make me brainliest if it’s correct.
6 0
3 years ago
Other questions:
  • Plz help me with number 13 plz I need your help plz help me I’m begging you plz help me plz it’s an emergency plz I’m begging yo
    8·2 answers
  • What percentage of 42 minutes is spent in 24 hours
    6·1 answer
  • Elizabeth wants to buy her mother a pair of pearl earrings for Mother’s Day. The earrings cost fifty dollars. The sales tax rate
    10·1 answer
  • a coin is taken at random froma purse that contains one penny, 2 nickels, 4 dimes, and 3 quarters. let x be the value of the dra
    12·1 answer
  • HURRY JUST GIVE THE ANSWER PLZ!!
    13·2 answers
  • Fred, Norman, and Dave own a total of 128 comic books. If Dave owns 44 of them, what is the average
    11·1 answer
  • Help me for brainlist pleaseee
    11·1 answer
  • Jillene spends $240 on a new business the first month. If she spends 24% more each month, approximately how much will she spend
    11·1 answer
  • Find the length of the line segment displayed below. Round your answer to the nearest hundredth (2 decimal places)
    12·1 answer
  • Answer these questions please !
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!