1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
monitta
3 years ago
13

A 50-gal tank initially contains 10 gal of fresh water. At t = 0, a brine solution

Mathematics
1 answer:
scZoUnD [109]3 years ago
5 0

\huge \mathbb{SOLUTION:}

\begin{array}{l} \textsf{Let }A(t)\textsf{ be the function which gives the amount} \\ \textsf{of the salt dissolved in the liquid in the tank at} \\ \textsf{any time }t. \textsf{ We want to develop a differential} \\ \textsf{equation that, when solved, will give us an} \\ \textsf{expression for }A(t). \\ \\ \textsf{The basic principle determining the differential} \\ \textsf{equation is} \\ \\ \end{array}

\boxed{ \footnotesize \begin{array}{l} \qquad\quad \quad\Large{\dfrac{dA}{dt} = R_{in} - R_{out}} \\ \\ \textsf{where:} \\ \\ \begin{aligned} \bullet\: R_{in} &= \textsf{rate of the salt entering} \\ &= \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt inflow}\end{array}}\right) \times \small(\textsf{Input of brine}) \\ \\ \bullet\: R_{out} &= \textsf{rate of the salt leaving} \\ &= \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt outflow}\end{array}}\right) \times \small(\textsf{Output of brine}) \end{aligned} \end{array}} \\ \\

\begin{array}{l} \textsf{On the problem, the amount of salt in the tank,} \\ A(t), \textsf{changes overtime is given by the differential} \\ \textsf{equation}  \\ \\ \footnotesize A'(t) = \left(\dfrac{4\ \textsf{gal}}{1\ \textsf{min}}\right)\!\!\left(\dfrac{1\ \textsf{lb}}{1\ \textsf{gal}}\right) - \left(\dfrac{2\ \textsf{gal}}{1\ \textsf{min}}\right)\!\!\left(\dfrac{A(t)\ \textsf{lb}}{10 + (4 - 2)t\ \textsf{gal}}\right) \\ \\ \textsf{There's no salt in the tank (fresh water) at the} \\ \textsf{start, so }A(0) = 0. \textsf{ The amount of solution in the} \\ \textsf{tank is given by }10 + (4 -2)t, \textsf{so the tank will} \\ \textsf{overflow once this expression is equal to the total} \\ \textsf{volume or capacity of the tank.} \\ \\ 10 + (4 - 2)t = 50 \\ \\ \textsf{Solving for }t,\textsf{ we get} \\ \\ \implies \boxed{t = 20\textsf{ mins}} \\ \\ A'(t) = 4 - \dfrac{2A(t)}{10 + 2t} \\ \\ A'(t) = 4 - \dfrac{1}{5 + t} A(t) \\ \\ A'(t) + \dfrac{1}{5 + t} A(t) = 4 \\ \\ \textsf{This is a linear ODE with integrating factor} \\ \mu (t) = e^{\int \frac{1}{5 + t}\ dt} = e^{\ln |5 + t|} = 5 + t \\ \\ \textsf{Multiplying this to the ODE, we get} \\ \\ (5 + t)A'(t) + A(t) = 4(5 + t) \\ \\ [(5 + t)A(t)]' = 20 + 4t \\ \\ (5 + t)A(t) = 20t + 2t^2 + C \\ \\ \textsf{Since }A(0) = 0, \textsf{ we get } C = 0. \\ \\ A(t) = \dfrac{2t^2 + 20t}{t + 5} \\ \\ A(t) = 2t + 10 - \dfrac{50}{t + 5} \\ \\ \textsf{So the function that gives the amount of salt at} \\ \textsf{any given time }t,\textsf{ is given by} \\ \\ \implies A(t) = 2t + 10 - \dfrac{50}{t + 5} \\ \\ \textsf{The amount of salt in the tank at the moment} \\ \textsf{of overflow or at }t = 20\textsf{ mins is equal to} \\ \\ A(20) = 2(20) + 10 - \dfrac{50}{20 + 5} \\ \\ \implies \boxed{A = 48\ \textsf{gallons}} \end{array}

\Large \mathbb{ANSWER:}

\qquad\red{\boxed{\begin{array}{l} \textsf{a. }20\textsf{ mins} \\ \\ \textsf{b. }48\textsf{ gallons}\end{array}}}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

You might be interested in
Nicole has a box of pencil 1/4 of the pencil is red,3/8 are yellow and the rest is green.
Serjik [45]

Answer:

3/8

Step-by-step explanation:

Fraction of green pencils = 1 -1/4 + 3/8 =3/8

4 0
3 years ago
Read 2 more answers
Does this set of orderedpqirs represent a function? Why or why not ?
LuckyWell [14K]
C is correct because the x values don't repeat
3 0
3 years ago
.........................................................
Studentka2010 [4]

Answer: no cheating on the state test

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
At a horse show, there are both people and horses in the ring. Maria counted 22 heads and 64 legs. How many horses and people ar
kondor19780726 [428]
There are 14 horses and 8 men.
4 0
3 years ago
20 POINTS SOMEONE PLEASE ANSWER CORRECTLY
Ipatiy [6.2K]

Answer:

Its a, d, and e

Step-by-step explanation:

I got it right on edge2020

pls brainliest? :)

5 0
3 years ago
Read 2 more answers
Other questions:
  • Allen has 344 baseball cards he gave keyone 25 how many cards does Allen have left?
    6·1 answer
  • How to do this I don’t understand
    8·1 answer
  • Combine like terms. (-3^2-7y-9)-(4y^2+6y+9)
    6·1 answer
  • Can anyone please help me☹​
    6·1 answer
  • ASAP!!!!!!!!!!!!!!!!!!!
    13·2 answers
  • The circumference is 9.42 cm.
    13·1 answer
  • (11-5q) 2(2.5q 8)what is this?
    15·1 answer
  • The functions (x) and g(x) are defined below.
    15·1 answer
  • Select all equations that have one solution. –3(– x – 2) = 3( x – 2) 1/2( x) = x + 1/2 3/4(4 x – 8) = 18 2 x + 2 x + 2 = 4 x + 2
    11·1 answer
  • Please answer this 3/4 of x=16 find x​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!