1/3
because a foot is a third of a yard and a yard is 3 feet.
Answer:
System A has 4 real solutions.
System B has 0 real solutions.
System C has 2 real solutions
Step-by-step explanation:
System A:
x^2 + y^2 = 17 eq(1)
y = -1/2x eq(2)
Putting value of y in eq(1)
x^2 +(-1/2x)^2 = 17
x^2 + 1/4x^2 = 17
5x^2/4 -17 =0
Using quadratic formula:

a = 5/4, b =0 and c = -17

Finding value of y:
y = -1/2x


System A has 4 real solutions.
System B
y = x^2 -7x + 10 eq(1)
y = -6x + 5 eq(2)
Putting value of y of eq(2) in eq(1)
-6x + 5 = x^2 -7x + 10
=> x^2 -7x +6x +10 -5 = 0
x^2 -x +5 = 0
Using quadratic formula:

a= 1, b =-1 and c =5

Finding value of y:
y = -6x + 5
y = -6(\frac{1\pm\sqrt{19}i}{2})+5
Since terms containing i are complex numbers, so System B has no real solutions.
System B has 0 real solutions.
System C
y = -2x^2 + 9 eq(1)
8x - y = -17 eq(2)
Putting value of y in eq(2)
8x - (-2x^2+9) = -17
8x +2x^2-9 +17 = 0
2x^2 + 8x + 8 = 0
2x^2 +4x + 4x + 8 = 0
2x (x+2) +4 (x+2) = 0
(x+2)(2x+4) =0
x+2 = 0 and 2x + 4 =0
x = -2 and 2x = -4
x =-2 and x = -2
So, x = -2
Now, finding value of y:
8x - y = -17
8(-2) - y = -17
-16 -y = -17
-y = -17 + 16
-y = -1
y = 1
So, x= -2 and y = 1
System C has 2 real solutions
<span>The total distance traveled and the time spent driving on the trip can be represented by both a relation and a function</span>
At least you can write it as the sum of half of it twice, that is:
2/x = 1/x + 1/x
whatever x number you have, for example:
2/5 = 1/5 + 1/5
But then, you can express a fraction in many different ways, for example again:
2/5 = <span>1/5 + 1/5 = 2/10 + 2/10
</span>= 1/10 + 1/10 + 1/10 + 1/10
so there are an infinite ways of expressing such a fraction.