Answer:
sorry for points
Step-by-step explanation:
Answer is 19;
Problem
a1=325 , d=25 , S19=?
Result
S19=10450
Explanation
To find S19 we use formula
Sn=n2⋅(2a1+(n−1)⋅d)
In this example we have a1=325 , d=25 , n=19. After substituting these values into the above equation, we obtain:
Sn19=n2⋅(2a1+(n−1)⋅d)=192⋅(2⋅325+(19−1)⋅25)=192⋅(650+18⋅25)=192⋅(650+450)=192⋅1100=10450
9514 1404 393
Answer:
a) x = -3
b) y = (28/27)x -27
Step-by-step explanation:
a) College street has a slope of 0, so is a horizontal line. 2nd Ave is perpendicular, so is a vertical line, described by an equation of the form ...
x = constant
For 2nd Ave to intersect the point (-3, 1), the constant must match that x-coordinate. The equation is ...
x = -3
__
b) Since Ace Rd is perpendicular to Davidson St, its slope will be the opposite reciprocal of the slope of Davidson St. The slope of Ace Rd is ...
m = -1/(-27/28) = 28/27
Using the point-slope equation for a line, we can model Ace Rd as ...
y -y1 = m(x -x1)
y -1 = (28/27)(x -27)
y = (28/27)x -27
Equation:
248=4n+8
4n=240
n=240÷4
n=60
Step-by-step explanation:
I need to use the fact that it has exactly one root to find the y part - do I use the quadratic formula on the last bit I have written?
I have x already and z = x+iy