Table indicating application of each transaction on the bank reconciliation statement.
<h3>Bank reconciliation statement </h3>
Item Bank Balance Cash Book Balance Shown/Not shown
1. N/A Deduct Shown
2. N/A Add Shown
3. N/A N/A Not Shown
4. Add N/A Shown
5. N/A Deduct Shown
6. N/A N/A Not Shown
7. N/A Deduct Shown
8. N/A Add Shown
9. N/A N/A Not Shown
10. Deduct N/A Shown
11. Add N/A Shown
12. N/A Deduct Shown
N/A = not applicable
ADD= Add to the balance
Deduct =To deduct from the balances of the affected accounts
Shown/Not shown=Shown/Not shown on reconciliation
Learn more about bank reconciliation statements here: brainly.com/question/14279284
The function shown in the graph in the image attached below is
.
<u>Given the following data:</u>
- Points on the x-axis = (0, 4)
- Points on the y-axis = (0, 4)
First of all, we would determine the slope of this line by using the following formula;
![Slope. \;m = \frac{Change \; in \; y \;axis}{Change \; in \; x \;axis} \\\\Slope. \;m = \frac{y_2 - y_1}{x_2 - x_1}](https://tex.z-dn.net/?f=Slope.%20%5C%3Bm%20%3D%20%5Cfrac%7BChange%20%5C%3B%20in%20%5C%3B%20y%20%5C%3Baxis%7D%7BChange%20%5C%3B%20in%20%5C%3B%20x%20%5C%3Baxis%7D%20%5C%5C%5C%5CSlope.%20%5C%3Bm%20%3D%20%5Cfrac%7By_2%20-%20y_1%7D%7Bx_2%20-%20x_1%7D)
Substituting the points into the formula, we have;
![Slope. \;m = \frac{4 - 0}{4 - 0}\\\\Slope. \;m = \frac{4}{4}\\\\](https://tex.z-dn.net/?f=Slope.%20%5C%3Bm%20%20%3D%20%5Cfrac%7B4%20-%200%7D%7B4%20-%200%7D%5C%5C%5C%5CSlope.%20%5C%3Bm%20%20%3D%20%5Cfrac%7B4%7D%7B4%7D%5C%5C%5C%5C)
Slope, m = 1
Next, we would find the intercept:
Let x = 0, for the y-intercept.
![y=mx+b\\\\4=1(0)+b](https://tex.z-dn.net/?f=y%3Dmx%2Bb%5C%5C%5C%5C4%3D1%280%29%2Bb)
b = 4
Therefore, the function shown in the graph in the image attached below is ![y=|x-4|](https://tex.z-dn.net/?f=y%3D%7Cx-4%7C)
Read more on slope here: brainly.com/question/3493733
Answer:
0.9726
Explanation:
The computation of the probability of a sample mean is shown below:
![P(\bar x < 24.3)](https://tex.z-dn.net/?f=P%28%5Cbar%20x%20%3C%2024.3%29)
To find the probability first we have to determine the z score which is
![z = \frac{\bar x - \mu_{\bar x}}{\sigma_{\bar x}} \\\\ = \frac{\bar x - \mu }{\frac{\sigma}{\sqrt{n} } } \\\\ = \frac{24.3 - 24}{\frac{1.25}{\sqrt{64} } }](https://tex.z-dn.net/?f=z%20%3D%20%5Cfrac%7B%5Cbar%20x%20-%20%5Cmu_%7B%5Cbar%20x%7D%7D%7B%5Csigma_%7B%5Cbar%20x%7D%7D%20%5C%5C%5C%5C%20%3D%20%5Cfrac%7B%5Cbar%20x%20-%20%5Cmu%20%7D%7B%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D%20%5C%5C%5C%5C%20%3D%20%5Cfrac%7B24.3%20-%2024%7D%7B%5Cfrac%7B1.25%7D%7B%5Csqrt%7B64%7D%20%7D%20%7D)
= 1.92
Now probability is
![P(\bar x < 24.3) \\\\= P(z < 1.92)](https://tex.z-dn.net/?f=P%28%5Cbar%20x%20%3C%2024.3%29%20%5C%5C%5C%5C%3D%20P%28z%20%3C%201.92%29)
= 0.9726
Hence, the probability of the sample mean is 0.9726
We simply applied the above formulas to determined the probability of a sample mean and the same is to be considered