C is 6 because the absolute value of -19 -13 would be 19-13 which equals 6
So lets get to the problem
<span>165°= 135° +30° </span>
<span>To make it easier I'm going to write the same thing like this </span>
<span>165°= 90° + 45°+30° </span>
<span>Sin165° </span>
<span>= Sin ( 90° + 45°+30° ) </span>
<span>= Cos( 45°+30° )..... (∵ Sin(90 + θ)=cosθ </span>
<span>= Cos45°Cos30° - Sin45°Sin30° </span>
<span>Cos165° </span>
<span>= Cos ( 90° + 45°+30° ) </span>
<span>= -Sin( 45°+30° )..... (∵Cos(90 + θ)=-Sinθ </span>
<span>= Sin45°Cos30° + Cos45°Sin30° </span>
<span>Tan165° </span>
<span>= Tan ( 90° + 45°+30° ) </span>
<span>= -Cot( 45°+30° )..... (∵Cot(90 + θ)=-Tanθ </span>
<span>= -1/tan(45°+30°) </span>
<span>= -[1-tan45°.Tan30°]/[tan45°+Tan30°] </span>
<span>Substitute the above values with the following... These should be memorized </span>
<span>Sin 30° = 1/2 </span>
<span>Cos 30° =[Sqrt(3)]/2 </span>
<span>Tan 30° = 1/[Sqrt(3)] </span>
<span>Sin45°=Cos45°=1/[Sqrt(2)] </span>
<span>Tan 45° = 1</span>
Take 3 out of both of them
3(5x+2)
Original coordinates of the points:
A (8,15) ; B (12,13) ; C (8,10)
Dilated scale factor of 3.
A ⇒ 3x = 3(8) = 24 ; 3y = 3(15) = 45 ⇒ A' (24,45)
B ⇒ 3x = 3(12) = 36 ; 3y = 3(13) = 39 ⇒ B' (36, 39)
C ⇒ 3x = 3(8) = 24 ; 3y = 3(10) = 30 ⇒ C' (24, 30)
The given image forms a right triangle. So, I'll get the short leg and long leg of the right triangle to solve for the hypotenuse, length of CB.
Short leg: y value of B and C
39 - 30 = 9
Long leg: x value of B and C
36 - 24 = 12
a² + b² = c²
9² + 12² = c²
81 + 144 = c²
225 = c²
√225 = √c²
15 = c
The length of CB is 15 units.
Answer: B
Step-by-step explanation:
y = azaleas
x = lilies
6y + 5x =196 total cost
y + x = 36 total number of items
y = 36 – x
6(36 -x ) +5x =196
216 – 6x + 5x = 196
-x = 196 – 216
-x = -20
Divide by -1
X = 20 lilies
Plug into y equation
Y = 36 – 20
Y= 16 azaleas
To check
6(16) + 5(20) = 196
96 + 100 = 196