Answer:
AY = 16
IY = 9
FG = 30
PA = 24
Step-by-step explanation:
<em>The </em><em>centroid </em><em>of the triangle </em><em>divides each median</em><em> at the ratio </em><em>1: 2</em><em> from </em><em>the base</em>
Let us solve the problem
In Δ AFT
∵ Y is the centroid
∵ AP, TI, and FG are medians
→ By using the rule above
∴ Y divides AP at ratio 1: 2 from the base FT
∴ AY = 2 YP
∵ YP = 8
∴ AY = 2(8)
∴ AY = 16
∵ PA = AY + YP
∴ AP = 16 + 8
∴ AP = 24
∵ Y divides TI at ratio 1: 2 from the base FA
∴ TY = 2 IY
∵ TY = 18
∴ 18 = 2
→ Divide both sides by 2
∴ 9 = IY
∴ IY = 9
∵ Y divides FG at ratio 1:2 from the base AT
∴ FY = 2 YG
∵ FY = 20
∴ 20 = 2 YG
→ Divide both sides by 2
∴ 10 = YG
∴ YG = 10
∵ FG = YG + FY
∴ FG = 10 + 20
∴ FG = 30
Answer:
n =
, n = 
Step-by-step explanation:
6n² - 5n - 7 = - 8 ( add 8 to both sides )
6n² - 5n + 1 = 0 ← in standard form
Consider the product of the factors of the coefficient of the n² term and the constant term which sum to give the coefficient of the n- term
product = 6 × 1 = 6 and sum = - 5
The factors are - 3 and - 2
Use these factors to split the n- term
6n² - 3n - 2n + 1 = 0 ( factor the first/second and third/fourth terms )
3n(2n - 1) - 1(2n - 1) = 0 ← factor out (2n - 1) from each term
(2n - 1)(3n - 1) = 0 ← in factored form
Equate each factor to zero and solve for n
3n - 1 = 0 ⇒ 3n = 1 ⇒ n = 
2n - 1 = 0 ⇒ 2n = 1 ⇒ n = 
Answer:
Infinity
Step-by-step explanation:
You cannot go higher than this
Answer:
The slope is 10/8
Step-by-step explanation:
You would rise 10 units and you would run 8 units.
Answer:
A on Edg2020
Step-by-step explanation: