1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
2 years ago
15

Rose is 60 inches tall. how many feet tall is Rose

Mathematics
1 answer:
nata0808 [166]2 years ago
4 0

Answer:

5 feet

Step-by-step explanation: 60 divided by 12 inches is 5 feet

You might be interested in
Given that PS is a median of triangle PQR, find RQ<br> A.6<br> B.12<br> C.19<br> D.38
Zinaida [17]
The median triangle is a line segment that connects the vertex and the midpoint of the opposite side. Therefore, in the given, we can say that RS = QS

Equating RS and QS, we will find the value of X

RS = QS 
5x-11 = 2x+7
5x-2x = 7+11    ⇒ combine like terms
3x = 18             ⇒ divide both sides by 3 to get the x value 
x = 6

Find the value of RS and QS, in this, we will show that two are equal

5(6)-11 = 2(6)+7
19 = 19  ⇒ correct

Therefore RQ is the sum of RS and QS or simply twice the length of either segment

RQ = 19 x 2 = 19 + 19 = 38 (D)
5 0
2 years ago
I need help writing a function rule for this set of values. Thanks!
Nonamiya [84]

Answer:

2-1/-2--4= 1/2

0-1/0-2=-1/-2

2-0/-1-0=2/-1

-2--1/4-2=-1/2

can i have a Brainliest plz thank you

3 0
2 years ago
Monique is planning the locations for three exhibit areas at the festival. She drew a model of one of the exhibit areas as shown
WITCHER [35]

The second area was translated 1 unit right and 6 units down to form the third exhibit area.

<h3>Transformation</h3>

Transformation is the movement of a point from its initial location to a new location. Types of transformation are translation, reflection, dilation and rotation.

Translation is the movement of a point either up, down, left or right.

Given the translation (x,y)→(x+1,y+6). Hence:

The second area was translated 1 unit right and 6 units down to form the third exhibit area.

Find out more on Transformation at: brainly.com/question/1462871

7 0
2 years ago
In triangle ABC, c = 8, b = 6, and ∠C = 60°.<br><br> sin∠B = _____
guajiro [1.7K]
<span><u><em>Answer:</em></u>
sin B = 0.65

<u><em>Explanation:</em></u>
To solve this question, we will need to use <u>the sine law</u> that is shown in the attached image.

<u>Here, we have:</u>
c = 8
b = 6
angle C = 60</span>°<span>

<u>Therefore:</u>
</span>\frac{b}{sin(B)} = \frac{c}{sin(C)}

\frac{6}{sin(B)} = \frac{8}{sin(60)}
<span>
sin B = 0.649 which is approximately 0.65

Hope this helps :)</span>

4 0
3 years ago
Read 2 more answers
Compute the matrix of partial derivatives of the following functions.
s344n2d4d5 [400]

For a vector-valued function

\mathbf f(\mathbf x)=\mathbf f(x_1,x_2,\ldots,x_n)=(f_1(x_1,x_2,\ldots,x_n),\ldots,f_m(x_1,x_2,\ldots,x_n))

the matrix of partial derivatives (a.k.a. the Jacobian) is the m\times n matrix in which the (i,j)-th entry is the derivative of f_i with respect to x_j:

D\mathbf f(\mathbf x)=\begin{bmatrix}\dfrac{\partial f_1}{\partial x_1}&\dfrac{\partial f_1}{\partial x_2}&\cdots&\dfrac{\partial f_1}{\partial x_n}\\\dfrac{\partial f_2}{\partial x_1}&\dfrac{\partial f_2}{\partial x_2}&\cdots&\dfrac{\partial f_2}{\partial x_n}\\\vdots&\vdots&\ddots&\vdots\\\dfrac{\partial f_m}{\partial x_1}&\dfrac{\partial f_m}{\partial x_2}&\cdots&\dfrac{\partial f_n}{\partial x_n}\end{bmatrix}

So we have

(a)

D f(x,y)=\begin{bmatrix}\dfrac{\partial(e^x)}{\partial x}&\dfrac{\partial(e^x)}{\partial y}\\\dfrac{\partial(\sin(xy))}{\partial x}&\dfrac{\partial(\sin(xy))}{\partial y}\end{bmatrix}=\begin{bmatrix}e^x&0\\y\cos(xy)&x\cos(xy)\end{bmatrix}

(b)

D f(x,y,z)=\begin{bmatrix}\dfrac{\partial(x-y)}{\partial x}&\dfrac{\partial(x-y)}{\partial y}&\dfrac{\partial(x-y)}{\partial z}\\\dfrac{\partial(y+z)}{\partial x}&\dfrac{\partial(y+z)}{\partial y}&\dfrac{\partial(y+z)}{\partial z}\end{bmatrix}=\begin{bmatrix}1&-1&0\\0&1&1\end{bmatrix}

(c)

Df(x,y)=\begin{bmatrix}y&x\\1&-1\\y&x\end{bmatrix}

(d)

Df(x,y,z)=\begin{bmatrix}1&0&1\\0&1&0\\1&-1&0\end{bmatrix}

5 0
3 years ago
Other questions:
  • A top fuel dragster can use as much as 6 gallons in 4 1 2 412 seconds to travel 1 4 14 mile. At this rate, how many gallons of f
    7·1 answer
  • Find the area of the sector below. Round your answer to two decimal places. PLEASE HELP PIC ATTACHED (pls explain how to solve i
    9·1 answer
  • PLEASE HELP!!
    5·1 answer
  • What is the answer for 9(2-u)
    5·1 answer
  • What is the expression that represents 16 and w it's for math and it's to do with algebraic
    15·1 answer
  • 4 yd 8 in + 6 yd 6 in=?
    12·1 answer
  • Suppose that a and b are integers, a ≡ 4 ( mod 13 ) and b ≡ 9 ( mod 13 ) . Find the integer c with 0 ≤ c ≤ 12 such that: c ≡ 9 a
    9·1 answer
  • What is the perimeter, in units, of rectangle ABCD
    14·1 answer
  • Kelly worked and earned $17 per hour working at the bakery. She got a holiday bonus of $150. Write an algebraic expression to re
    10·2 answers
  • Which of the following is a monomial? O A. 11x-9 OB. 20x9 OC. 20x⁹ - 7x O D.9/x<br>​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!