5D%7Bx%7D%20%20%5Ctan%5E%7B-%201%7D%20%28x%29%7D%7B%281%20%2B%20%20%7Bx%7D%5E%7B%20%5Cphi%7D%20%7B%29%7D%5E%7B2%7D%20%20%7D%20%7B%7D%5E%7B%7D%20%20%20%7B%7D%20%20%20%5C%3A%20dx%5C%5C%20" id="TexFormula1" title=" \rm \int_{0}^ \infty \frac{ \sqrt[ \scriptsize\phi]{x} \tan^{- 1} (x)}{(1 + {x}^{ \phi} {)}^{2} } {}^{} {} \: dx\\ " alt=" \rm \int_{0}^ \infty \frac{ \sqrt[ \scriptsize\phi]{x} \tan^{- 1} (x)}{(1 + {x}^{ \phi} {)}^{2} } {}^{} {} \: dx\\ " align="absmiddle" class="latex-formula">
1 answer:
With ϕ ≈ 1.61803 the golden ratio, we have 1/ϕ = ϕ - 1, so that
![I = \displaystyle \int_0^\infty \frac{\sqrt[\phi]{x} \tan^{-1}(x)}{(1+x^\phi)^2} \, dx = \int_0^\infty \frac{x^{\phi-1} \tan^{-1}(x)}{x (1+x^\phi)^2} \, dx](https://tex.z-dn.net/?f=I%20%3D%20%5Cdisplaystyle%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%5B%5Cphi%5D%7Bx%7D%20%5Ctan%5E%7B-1%7D%28x%29%7D%7B%281%2Bx%5E%5Cphi%29%5E2%7D%20%5C%2C%20dx%20%3D%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7Bx%5E%7B%5Cphi-1%7D%20%5Ctan%5E%7B-1%7D%28x%29%7D%7Bx%20%281%2Bx%5E%5Cphi%29%5E2%7D%20%5C%2C%20dx)
Replace
:

Split the integral at x = 1. For the integral over [1, ∞), substitute
:

The integrals involving tan⁻¹ disappear, and we're left with

You might be interested in
Answer:
4
hours
i hope that helped
Step-by-step explanation:
Step-by-step explanation:
288÷60(60 minutes in an hour) = 4.8
is this what you asked for?
Answer:
i guess the answer should be b
Step-by-step explanation:
surface area depends on the length and width but it doesn't depend on the height of a prism
Answer:
the value after solving = 16
Step-by-step explanation:
=》8 + (8/1^4) =》8 + 8 ( since 1^4 = 1 )
=》16
Answer:
5
Step-by-step explanation:
took the test