It’s 6 I think I’m kind of smart so I might be right
Answer:
The equivalent will be:
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{\frac{2}{7}}\right)\left(y^{-\frac{3}{5}}\right)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D%3D%5Cleft%28%5C%3Ax%5E%7B%5Cfrac%7B2%7D%7B7%7D%7D%5Cright%29%5Cleft%28y%5E%7B-%5Cfrac%7B3%7D%7B5%7D%7D%5Cright%29)
Therefore, option 'a' is true.
Step-by-step explanation:
Given the expression
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D)
Let us solve the expression step by step to get the equivalent
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D)
as
∵ ![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)



also
∵ ![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)



so the expression becomes


∵ 
Thus, the equivalent will be:
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{\frac{2}{7}}\right)\left(y^{-\frac{3}{5}}\right)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D%3D%5Cleft%28%5C%3Ax%5E%7B%5Cfrac%7B2%7D%7B7%7D%7D%5Cright%29%5Cleft%28y%5E%7B-%5Cfrac%7B3%7D%7B5%7D%7D%5Cright%29)
Therefore, option 'a' is true.
<h2>The graph of y = ax^2 + bx + c
</h2><h2>A nonlinear function that can be written on the standard form
</h2><h2>ax2+bx+c,where a≠0
</h2><h2>All quadratic functions has a U-shaped graph called a parabola. The parent quadratic function is
</h2><h2>
y=x2
</h2><h2>
The lowest or the highest point on a parabola is called the vertex. The vertex has the x-coordinate
</h2><h2>x=−b2a
</h2><h2>The y-coordinate of the vertex is the maximum or minimum value of the function.
</h2><h2>a > 0 parabola opens up minimum value
</h2><h2>a < 0 parabola opens down maximum value
</h2><h2>
A rule of thumb reminds us that when we have a positive symbol before x2 we get a happy expression on the graph and a negative symbol renders a sad expression.
</h2><h2>The vertical line that passes through the vertex and divides the parabola in two is called the axis of symmetry. The axis of symmetry has the equation
</h2><h2>x=−b2a
</h2><h2>The y-intercept of the equation is c.
</h2><h2>
When you want to graph a quadratic function you begin by making a table of values for some values of your function and then plot those values in a coordinate plane and draw a smooth curve through the points.</h2>
Answer:
none
Step-by-step explanation:
-14[x±2]=-14x±28
14[-x±12]=-14x168
14[-x±2]=-14x±28
-14[-x±12]=-14x±168
6.20 x .15 = .93
6.20-.93= 5.27
107.27-5.27=102
102 x .15 = 15.3
102+15.3=117.3
$117.3