Answer:
1)    
FLAW                         TYPE2         NO TYPE2 FLAW 
TYPE1                         0.015           0.025
NO TYPE1 FLAW        0.01             0.95
2) 0.04 and $0.04
3) 0.025 and $0.025
4) 0.015 and $0.015
5) 0.95 and $0.95
 Step-by-step explanation:
 Given that;
financial cost = $1
p(flaw) = 0.05   
p(type 1 flaw / flaw) = 80% = 0.8
p(type 2 flaw / flaw) = 50% = 0.5
p( type 1 and 2 flaw/flaw) = 30% = 0.30
1) Bivariate Table
p( type 1 flaw) = p(flaw) × p(type 1 flaw/flaw) = 0.05 × 0.8 = 0.04
p( type 2 flaw) = p(flaw) × p(type 2 flaw/flaw)  = 0.05 × 0.5 = 0.025
p( type 1 and 2 flaw) =  p(flow) × p( type 1 & 2 flaw/flaw) = 0.05 × 0.3 = 0.015
p( only 1 flow) = 0.04 - 0.015 = 0.025
p( only 2 flow) =  0.025 - 0.015 = 0.01
 
THEREFORE  the Bivariate Table;
FLAW                         TYPE2         NO TYPE2 FLAW
TYPE1                         0.015           0.025
NO TYPE1 FLAW       0.01              0.95
2) probability and expectations of type 1 flaw?
p( type 1 flaw) = p(flaw) × p(type 1 flaw/flaw) = 0.05 × 0.8 = 0.04
Expected financial cost to the firm per good = $1 × 0.04 = $0.04
3)  probability and expectation of Type 2 flaw
p( type 2 flaw) = p(flaw) × p(type 2 flaw/flaw)  = 0.05 × 0.5 = 0.025
Expected financial cost to the firm per good = $1 × 0.025 = $0.025
4) 
probability and expectations of Type 1 and 2 flaws
p( type 1 and 2 flaw) =  p(flow) × p( type 1 & 2 flaw/flaw) = 0.05 × 0.3 = 0.015
Expected financial cost to the firm per good = $1 * 0.015 = $0.015
5) probability and expectations of no flaws? 
Probability of no flaw = P(No flaw) =95% =  0.95
Expected financial cost saved the firm per good due to no flaw 
 = $1 × 0.95 = $0.95