The probability that that a randomly selected student will buy a raffle ticket and win a prize = 0.03
Step-by-step explanation:
Step 1 :
Given,
The percentage of students buying the raffle ticket = 30%
The percentage that the student who bought the ticket wins the prize = 10%
We need to determined the probability that randomly selected student will buy a raffle ticket and win a prize.
Step 2 :
The probability that a student buys the raffle ticket = 
The probability that a student wins a prize =
= 
The probability that a student who buys the ticket wins a price can be computed by taking the product of the above 2 probabilities.
=
×
=
= 0.03
Step 3 :
Answer :
The probability that that a randomly selected student will buy a raffle ticket and win a prize = 0.03
Answer: 120
Step-by-step explanation:
3 x 108 = 324
3 x 102 = 204
so 324 - 204 = 120
Answer:
P[X=3,Y=3] = 0.0416
Step-by-step explanation:
Solution:
- X is the RV denoting the no. of customers in line.
- Y is the sum of Customers C.
- Where no. of Customers C's to be summed is equal to the X value.
- Since both events are independent we have:
P[X=3,Y=3] = P[X=3]*P[Y=3/X=3]
P[X=3].P[Y=3/X=3] = P[X=3]*P[C1+C2+C3=3/X=3]
P[X=3]*P[C1+C2+C3=3/X=3] = P[X=3]*P[C1=1,C2=1,C3=1]
P[X=3]*P[C1=1,C2=1,C3=1] = P[X=3]*(P[C=1]^3)
- Thus, we have:
P[X=3,Y=3] = P[X=3]*(P[C=1]^3) = 0.25*(0.55)^3
P[X=3,Y=3] = 0.0416
(6x^4) + (15x^3)(y^2) + (3x^2)(y^3) is your answer
As we are looking at descending powers of x. Look at the powers of the x. In the first one (6x^4), the power is 4, and 4 is greater than the other numbers given (3 & 2). Therefore, the order given above is correct.
hope this helps