Answer:I do not know because there are no number in that equation sorry
:( :(
Step-by-step explanation:

To get the 0.12 to repeat, the trick is to subtract 1 from the denominator

Then reduce the fraction.

now add the 3 to get
Answer: The probability in (b) has higher probability than the probability in (a).
Explanation:
Since we're computing for the probability of the sample mean, we consider the z-score and the standard deviation of the sampling distribution. Recall that the standard deviation of the sampling distribution approximately the quotient of the population standard deviation and the square root of the sample size.
So, if the sample size higher, the standard deviation of the sampling distribution is lower. Since the sample size in (b) is higher, the standard deviation of the sampling distribution in (b) is lower.
Moreover, since the mean of the sampling distribution is the same as the population mean, the lower the standard deviation, the wider the range of z-scores. Because the standard deviation in (b) is lower, it has a wider range of z-scores.
Note that in a normal distribution, if the probability has wider range of z-scores, it has a higher probability. Therefore, the probability in (b) has higher probability than the probability in (a) because it has wider range of z-scores than the probability in (a).
53 degrees because it's complementary.
Answer:
(c, m) = (45, 10)
Step-by-step explanation:
A dozen White Chocolate Blizzards generate more income and take less flour than a dozen Mint Breezes, so production of those should clearly be maximized. Making 45 dozen Blizzards does not use all the flour, so the remaining flour can be used to make Breezes.
Maximum Blizzards that can be made: 45 dz. Flour used: 45×5 oz = 225 oz.
The remaining flour is ...
315 oz -225 oz = 90 oz
This is enough for (90 oz)/(9 oz/dz) = 10 dozen Mint Breezes. This is in the required range of 2 to 15 dozen.
Kelly should make 45 dozen White Chocolate Blizzards and 10 dozen Mint Breezes: (c, m) = (45, 10).
__
In the attached graph, we have reversed the applicable inequalities so the feasible region shows up white, instead of shaded with 5 different colors. The objective function is the green line, shown at the point that maximizes income. (c, m) ⇔ (x, y)