A combination is an unordered arrangement of r distinct objects in a set of n objects. To find the number of permutations, we use the following equation:
n!/((n-r)!r!)
In this case, there could be 0, 1, 2, 3, 4, or all 5 cards discarded. There is only one possible combination each for 0 or 5 cards being discarded (either none of them or all of them). We will be the above equation to find the number of combination s for 1, 2, 3, and 4 discarded cards.
5!/((5-1)!1!) = 5!/(4!*1!) = (5*4*3*2*1)/(4*3*2*1*1) = 5
5!/((5-2)!2!) = 5!/(3!2!) = (5*4*3*2*1)/(3*2*1*2*1) = 10
5!/((5-3)!3!) = 5!/(2!3!) = (5*4*3*2*1)/(2*1*3*2*1) = 10
5!/((5-4)!4!) = 5!/(1!4!) = (5*4*3*2*1)/(1*4*3*2*1) = 5
Notice that discarding 1 or discarding 4 have the same number of combinations, as do discarding 2 or 3. This is being they are inverses of each other. That is, if we discard 2 cards there will be 3 left, or if we discard 3 there will be 2 left.
Now we add together the combinations
1 + 5 + 10 + 10 + 5 + 1 = 32 choices combinations to discard.
The answer is 32.
-------------------------------
Note: There is also an equation for permutations which is:
n!/(n-r)!
Notice it is very similar to combinations. The only difference is that a permutation is an ORDERED arrangement while a combination is UNORDERED.
We used combinations rather than permutations because the order of the cards does not matter in this case. For example, we could discard the ace of spades followed by the jack of diamonds, or we could discard the jack or diamonds followed by the ace of spades. These two instances are the same combination of cards but a different permutation. We do not care about the order.
I hope this helps! If you have any questions, let me know :)
Ok so I like to go in steps with these questions- first draw a picture and identify your variables.
W=width
L= 3w-1
Now we know that length times width gets us area so we plug in our variables into the area equation.
200 = w(3w-1)
When you foil that equation you end up with a quadratic : 3w^2-w-200 = 0
Either factor that or use the quadratic formula to get
w= 8.33 and w= -8
Since you can't have a negative dimension you need to use 8.33 and plug it back into your length equation.
Final answer:
w= 8.33ft
l= 23.99ft
*Now I simplified the decimals a little bit so you end up with 199.8ft^2 for the area so just add a few decimals on here and there*
Answeh:
Height
A: Base Area
Volume = Ah/3
base=18
volume area of the box =120
=720
Step-by-step explanation:
Answer:
The answers are at A, D, and E
Step-by-step explanation:
It's right on Edge