VERTEXTo determine the vertex (coordinate x) of parabola y = ax² + bx + c, use this following formula
x vertex =

y = x² - 2x - 48
a = 1, b = -2, c = -48
plug in the numbers
x vertex =

x vertex =

x vertex =

x vertex = 1
To find y vertex, substitute the value of x vertex to the parabola equation
y = x² - 2x - 48
y = 1² - 2(1) - 48
y = 1 - 2 - 48
y = -49
The vertex is (1, -49)X-INTERCEPTx-intercept located in x axis, that means y = 0. Substitute y = 0 to the parabola equation
x² - 2x - 48 = y
x² - 2x - 48 = 0
(x - 8)(x + 6) = 0
x = 8 or x = -6
The x-intercepts are (8,0) and (-6,0)The answer is first option
What do the instructions say?
The answer is (24, 24).
Solution:
To find the point M that divides segment AB into 2:3 or 2/3 ratio, we determine k by writing the numerator of the ratio over the sum of the terms in the given ratio. Then, we calculate for the coordinates of point M from the slope of the line segment and the coordinates of A = (x1, y1) = (0, 0) and B = (x2, y2) = (60, 60) using the equation
(x, y) = (x1 + k(x2 - x1), y1 + k(y2 - y1) )
Therefore,
M = (x, y) = (0 + (2/5)(60 - 0), 0 + (2/5)(60 - 0)) = (24, 24)
Her age after 11 years is 11x
Before 5 years her age is x-5