1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
2 years ago
10

0%7Bx%7D%5E%7B2%7D%20%20%2B%201%7D%7B%20%7Bx%7D%5E%7B4%7D%20%20%2B%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%201%7D%20%20%5Cright%29%20%5Cleft%28%20%20%5Cfrac%7B%20ln%20%5Cleft%281%20-%20x%20%2B%20%20%7Bx%7D%5E%7B2%7D%20%20-%20%20%7Bx%7D%5E3%20%2B%20%20%5Cdots%20%2B%20%20%7Bx%7D%5E%7B2020%7D%20%20%20%5Cright%29%20%7D%7B%20ln%28x%29%20%7D%20%5Cright%29%20%5C%3A%20dx" id="TexFormula1" title=" \displaystyle \rm\int_{0}^{ \infty } \left( \frac{ {x}^{2} + 1}{ {x}^{4} + {x}^{2} + 1} \right) \left( \frac{ ln \left(1 - x + {x}^{2} - {x}^3 + \dots + {x}^{2020} \right) }{ ln(x) } \right) \: dx" alt=" \displaystyle \rm\int_{0}^{ \infty } \left( \frac{ {x}^{2} + 1}{ {x}^{4} + {x}^{2} + 1} \right) \left( \frac{ ln \left(1 - x + {x}^{2} - {x}^3 + \dots + {x}^{2020} \right) }{ ln(x) } \right) \: dx" align="absmiddle" class="latex-formula">​
Mathematics
1 answer:
mylen [45]2 years ago
8 0

Recall the geometric sum,

\displaystyle \sum_{k=0}^{n-1} x^k = \frac{1-x^k}{1-x}

It follows that

1 - x + x^2 - x^3 + \cdots + x^{2020} = \dfrac{1 + x^{2021}}{1 + x}

So, we can rewrite the integral as

\displaystyle \int_0^\infty \frac{x^2 + 1}{x^4 + x^2 + 1} \frac{\ln(1 + x^{2021}) - \ln(1 + x)}{\ln(x)} \, dx

Split up the integral at x = 1, and consider the latter integral,

\displaystyle \int_1^\infty \frac{x^2 + 1}{x^4 + x^2 + 1} \frac{\ln(1 + x^{2021}) - \ln(1 + x)}{\ln(x)} \, dx

Substitute x\to\frac1x to get

\displaystyle \int_0^1 \frac{\frac1{x^2} + 1}{\frac1{x^4} + \frac1{x^2} + 1} \frac{\ln\left(1 + \frac1{x^{2021}}\right) - \ln\left(1 + \frac1x\right)}{\ln\left(\frac1x\right)} \, \frac{dx}{x^2}

Rewrite the logarithms to expand the integral as

\displaystyle - \int_0^1 \frac{1+x^2}{1+x^2+x^4} \frac{\ln(x^{2021}+1) - \ln(x^{2021}) - \ln(x+1) + \ln(x)}{\ln(x)} \, dx

Grouping together terms in the numerator, we can write

\displaystyle -\int_0^1 \frac{1+x^2}{1+x^2+x^4} \frac{\ln(x^{2020}+1)-\ln(x+1)}{\ln(x)} \, dx + 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx

and the first term here will vanish with the other integral from the earlier split. So the original integral reduces to

\displaystyle \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \frac{\ln(1-x+\cdots+x^{2020})}{\ln(x)} \, dx = 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx

Substituting x\to\frac1x again shows this integral is the same over (0, 1) as it is over (1, ∞), and since the integrand is even, we ultimately have

\displaystyle \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \frac{\ln(1-x+\cdots+x^{2020})}{\ln(x)} \, dx = 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx \\\\ = 1010 \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \, dx \\\\ = 505 \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4} \, dx

We can neatly handle the remaining integral with complex residues. Consider the contour integral

\displaystyle \int_\gamma \frac{1+z^2}{1+z^2+z^4} \, dz

where γ is a semicircle with radius R centered at the origin, such that Im(z) ≥ 0, and the diameter corresponds to the interval [-R, R]. It's easy to show the integral over the semicircular arc vanishes as R → ∞. By the residue theorem,

\displaystyle \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4}\, dx = 2\pi i \sum_\zeta \mathrm{Res}\left(\frac{1+z^2}{1+z^2+z^4}, z=\zeta\right)

where \zeta denotes the roots of 1+z^2+z^4 that lie in the interior of γ; these are \zeta=\pm\frac12+\frac{i\sqrt3}2. Compute the residues there, and we find

\displaystyle \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4} \, dx = \frac{2\pi}{\sqrt3}

and so the original integral's value is

505 \times \dfrac{2\pi}{\sqrt3} = \boxed{\dfrac{1010\pi}{\sqrt3}}

You might be interested in
there are only blue, yellow and green cubes in a bag. there are three times as many blue cubes than yellow cubes and five times
Sophie [7]

Answer:

Do you have options to choose from

8 0
3 years ago
Read 2 more answers
-9x+8=26 i need help
Flura [38]

The answer is -2.

im sorry if the work is messy.

4 0
3 years ago
If 7x+3=24 what is the value of 5-4x?
sleet_krkn [62]
If 7x+3=24, that means x would be 3 so if you take 5-4x then that would be -7.
5 0
4 years ago
Read 2 more answers
I need help with this im confused
slamgirl [31]
700000 hope this helps lol sorry I just need one of my questions answered
4 0
3 years ago
Leta has $45 in her account in May how much money does she have in her account in august
inessss [21]
I don’t know but ask google
5 0
3 years ago
Read 2 more answers
Other questions:
  • I REALLY need this question i will answer any of your questions back promise
    7·1 answer
  • Find the y-intercept of 2x - 7y =28
    7·2 answers
  • Outside a​ home, there is aa 44​-key keypad numbered 11 through 44. The correct sixsix​-digit code will open the garage door. Th
    7·1 answer
  • |9-5|-|4-5|<br><br> what is the absolute value of this expression?<br><br> A)3<br> B)5<br> C)-3
    14·1 answer
  • Write the equation for the vertical line that contains point E(–7, 7).
    7·2 answers
  • 3.) There are 640 students who attend Washington College Prep. 75% of the students play a sport. How
    14·1 answer
  • If the monthly cost for 14 HCF is $48.70, what is the monthly cost for 10 HCF?
    11·1 answer
  • 20 points!!!!
    14·1 answer
  • Find the numerical values of the following expression.
    5·1 answer
  • Your friends and you notice a classmate who always has brand new clothes, shoes, and electronics. What would you need to know in
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!