1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
2 years ago
10

0%7Bx%7D%5E%7B2%7D%20%20%2B%201%7D%7B%20%7Bx%7D%5E%7B4%7D%20%20%2B%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%201%7D%20%20%5Cright%29%20%5Cleft%28%20%20%5Cfrac%7B%20ln%20%5Cleft%281%20-%20x%20%2B%20%20%7Bx%7D%5E%7B2%7D%20%20-%20%20%7Bx%7D%5E3%20%2B%20%20%5Cdots%20%2B%20%20%7Bx%7D%5E%7B2020%7D%20%20%20%5Cright%29%20%7D%7B%20ln%28x%29%20%7D%20%5Cright%29%20%5C%3A%20dx" id="TexFormula1" title=" \displaystyle \rm\int_{0}^{ \infty } \left( \frac{ {x}^{2} + 1}{ {x}^{4} + {x}^{2} + 1} \right) \left( \frac{ ln \left(1 - x + {x}^{2} - {x}^3 + \dots + {x}^{2020} \right) }{ ln(x) } \right) \: dx" alt=" \displaystyle \rm\int_{0}^{ \infty } \left( \frac{ {x}^{2} + 1}{ {x}^{4} + {x}^{2} + 1} \right) \left( \frac{ ln \left(1 - x + {x}^{2} - {x}^3 + \dots + {x}^{2020} \right) }{ ln(x) } \right) \: dx" align="absmiddle" class="latex-formula">​
Mathematics
1 answer:
mylen [45]2 years ago
8 0

Recall the geometric sum,

\displaystyle \sum_{k=0}^{n-1} x^k = \frac{1-x^k}{1-x}

It follows that

1 - x + x^2 - x^3 + \cdots + x^{2020} = \dfrac{1 + x^{2021}}{1 + x}

So, we can rewrite the integral as

\displaystyle \int_0^\infty \frac{x^2 + 1}{x^4 + x^2 + 1} \frac{\ln(1 + x^{2021}) - \ln(1 + x)}{\ln(x)} \, dx

Split up the integral at x = 1, and consider the latter integral,

\displaystyle \int_1^\infty \frac{x^2 + 1}{x^4 + x^2 + 1} \frac{\ln(1 + x^{2021}) - \ln(1 + x)}{\ln(x)} \, dx

Substitute x\to\frac1x to get

\displaystyle \int_0^1 \frac{\frac1{x^2} + 1}{\frac1{x^4} + \frac1{x^2} + 1} \frac{\ln\left(1 + \frac1{x^{2021}}\right) - \ln\left(1 + \frac1x\right)}{\ln\left(\frac1x\right)} \, \frac{dx}{x^2}

Rewrite the logarithms to expand the integral as

\displaystyle - \int_0^1 \frac{1+x^2}{1+x^2+x^4} \frac{\ln(x^{2021}+1) - \ln(x^{2021}) - \ln(x+1) + \ln(x)}{\ln(x)} \, dx

Grouping together terms in the numerator, we can write

\displaystyle -\int_0^1 \frac{1+x^2}{1+x^2+x^4} \frac{\ln(x^{2020}+1)-\ln(x+1)}{\ln(x)} \, dx + 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx

and the first term here will vanish with the other integral from the earlier split. So the original integral reduces to

\displaystyle \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \frac{\ln(1-x+\cdots+x^{2020})}{\ln(x)} \, dx = 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx

Substituting x\to\frac1x again shows this integral is the same over (0, 1) as it is over (1, ∞), and since the integrand is even, we ultimately have

\displaystyle \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \frac{\ln(1-x+\cdots+x^{2020})}{\ln(x)} \, dx = 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx \\\\ = 1010 \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \, dx \\\\ = 505 \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4} \, dx

We can neatly handle the remaining integral with complex residues. Consider the contour integral

\displaystyle \int_\gamma \frac{1+z^2}{1+z^2+z^4} \, dz

where γ is a semicircle with radius R centered at the origin, such that Im(z) ≥ 0, and the diameter corresponds to the interval [-R, R]. It's easy to show the integral over the semicircular arc vanishes as R → ∞. By the residue theorem,

\displaystyle \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4}\, dx = 2\pi i \sum_\zeta \mathrm{Res}\left(\frac{1+z^2}{1+z^2+z^4}, z=\zeta\right)

where \zeta denotes the roots of 1+z^2+z^4 that lie in the interior of γ; these are \zeta=\pm\frac12+\frac{i\sqrt3}2. Compute the residues there, and we find

\displaystyle \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4} \, dx = \frac{2\pi}{\sqrt3}

and so the original integral's value is

505 \times \dfrac{2\pi}{\sqrt3} = \boxed{\dfrac{1010\pi}{\sqrt3}}

You might be interested in
The figure below shows a shaded circular region inside a larger circle: A shaded circle is shown inside another larger circle. T
Taya2010 [7]
Area of larger circle:  3.14 x 5^2 = 78.5

Area of small circle: 3.14 x 2^2 = 12.56

Difference of the 2 areas: 78.5 - 12.56 = 65.94

Probability of being in large circle but not small circle: 65.94 / 78.5 = 0.84 = 84%


 The answer is A) 84%

3 0
3 years ago
Read 2 more answers
a bakery uses 3/5 a cup of sugar for each cookies.How many batches of cookies can they make with 9 cups of sugar?
marysya [2.9K]

Answer:

12

Step-by-step explanation:

divide 9 by 3/5 or .75

6 0
3 years ago
A football team gained 35 yards on a first down, lost 15 yards on the second down and gained 12 yards on the third down. How man
lidiya [134]
13 yards 

35-15=20
20+12=32
32-35=3
3+10=13
5 0
4 years ago
If f(x)=x^2-11, for what values of z is f(x) < 25?
GuDViN [60]

Answer:

D

Step-by-step explanation:

f(x) < 25

x² - 11 < 25

x² < 36

-6 < x < 6

5 0
3 years ago
Please help me.
Paul [167]

Answer:

(1,K) hope i could help

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the figures appear to be congruent?
    7·1 answer
  • Find the new price for the markdown given. Round to the nearest cent if necessary.
    15·1 answer
  • Please Help! 10 points!
    8·2 answers
  • A tree with a height of 12 yards casts a shadow that is 33 yards long at a certain time of day. At the same time, another tree n
    11·2 answers
  • A new housing development offers homes with a mortgage of $222,000 for 25 years at an annual interest of 8%. Find the monthly mo
    12·1 answer
  • Help!!! thank youuuuuuu
    5·1 answer
  • Find the product.<br><br> (-4·3·2)2
    6·2 answers
  • Can you show work for B?
    6·1 answer
  • Last year a student correctly answered 4/5 of the total 40 questions given.What percent of the total questions she correctly ans
    6·1 answer
  • Can someone message me that have alot of points?​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!