Answer:
The value of currents are
,
and
.
Step-by-step explanation:
The Ohm's law states that

it is given that the V₁=3V and V₂=4V.
In a parallel circuit:
- Voltage is same in each component
- Sum of the currents equals to the total current that flows.
.... (1)
Equation for first loop is,

..... (2)
Equation for second loop is,

..... (3)
On solving (1), (2) and (3) we get



Therefore the value of currents are
,
and
.
Answer:
20 minutes( 0.3333 hours) after they leave the station will they be 50 km apart, if the Two trains on opposite tracks leave the same station at the same time.
Step-by-step explanation:
One train travels at an average speed of 80 km/hr and the other travels at an average speed of 70 km/hr.
![\begin{array}{rrrrr} 10x&-&18y&=&2\\ -5x&+&9y&=&-1 \end{array}~\hfill \implies ~\hfill \stackrel{\textit{second equation }\times 2}{ \begin{array}{rrrrr} 10x&-&18y&=&2\\ 2(-5x&+&9y&)=&2(-1) \end{array}} \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{rrrrr} 10x&-&18y&=&2\\ -10x&+&18y&=&-2\\\cline{1-5} 0&+&0&=&0 \end{array}\qquad \impliedby \textit{another way of saying \underline{infinite solutions}}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-5x%26%2B%269y%26%3D%26-1%20%5Cend%7Barray%7D~%5Chfill%20%5Cimplies%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bsecond%20equation%20%7D%5Ctimes%202%7D%7B%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%202%28-5x%26%2B%269y%26%29%3D%262%28-1%29%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-10x%26%2B%2618y%26%3D%26-2%5C%5C%5Ccline%7B1-5%7D%200%26%2B%260%26%3D%260%20%5Cend%7Barray%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Banother%20way%20of%20saying%20%5Cunderline%7Binfinite%20solutions%7D%7D)
if we were to solve both equations for "y", we'd get

notice, the 1st equation is really the 2nd in disguise, since both lines are just pancaked on top of each other, every point in the lines is a solution or an intersection, and since both go to infinity, well, there you have it.
First plot the points. Let’s just use the first graph. When you have done that. Draw a triangle. Find the right angle and look at what line is across from that. That is the hypotenuse. That is the length that you are trying to find. So you have to do your equation: a^2 + b^2 = c^2. A and B have to be the length of the other 2 lines(just count it). When you have done that repack you a and b with your #s. And what ever is equal to you c. Then that is you answer. (Im sorry if this was confusing)