Answer:
Step-by-step explanation:
Using the section formula, if a point (x,y) divides the line joining the points (x
1
,y
1
) and (x
2
,y
2
) in the ratio m:n, then
(x,y)=(
m+n
mx
2
+nx
1
,
m+n
my
2
+ny
1
)
The vertices of the triangle are given to be (x
1
,y
1
),(x
2
,y
2
) and (x
3
,y
3
). Let these vertices be A,B and C respectively.
Then the coordinates of the point P that divides AB in l:k will be
(
l+k
lx
2
+kx
1
,
l+k
ly
2
+ky
1
)
The coordinates of point which divides PC in m:k+l will be
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧
m+k+l
mx
3
+(k+l)
(l+k)
lx
2
+kx
1
,
m+k+l
my
3
+(k+l)
(l+k)
ly
2
+ky
1
⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫
⇒(
m+k+l
kx
1
+lx
2
+mx
3
,
m+k+l
ky
1
+ly
2
+my
3
)
If you imagine it like the picture below, you could use the pythagorean theorem to solve for x
Answer:
a = 15
Step-by-step explanation:
First, you have to combine like terms: 5a and 3a, -5, -15, 6, and 4.
You can do it in any order and you will always get a = 15 for your answer.
Hope this helps!!!