Answer:
JOURNAL ENTRIES
Dr. Bad Debts.......................3,700
Cr. Accounts Receivable.............3,700
Explanation:
an adjustment for estimated uncollectible accounts at the end of 2021
JOURNAL ENTRIES
Dr. Bad Debts.......................3,700
Cr. Accounts Receivable.............3,700
for the actual bad debts in 2022. we have adjust for the difference between the estimate and the actual amount which is $1,100
JOURNAL ENTRIES
Dr. Accounts receivable...(3700-2600)...1,100
Cr. Bad debts recovered.....................................1,100
Being bad debts recovered, a shortfall in actual estimates
Answer:
Instructions are listed below
Explanation:
Giving the following information:
Mar. 1 Inventory 200 units at $8
Mar. 9 Sale 175 units
Mar. 13 Purchase 160 units at $9
Mar. 25 Sale 150 units
Assuming a perpetual inventory system and using the first-in, first-out (FIFO) method
Cost of goods sold= 25 units*$8 + 125units*9= $1325
Ending inventory= 35units* 9= $315
The difference between the monthly payment of R and S is equal to $48.53 by following the compound interest formula. Thus, Loan R's monthly loan amount is greater than Loan S.
<h3>What is a Compound interest loan?</h3>
Combined interest (or compound interest) is the loan interest or deposit calculated based on both the original interest and accrued interest from earlier periods.
![\rm\,For\,R\\\\P = \$\,17,550\\r\,= 5.32\%\\Time\,= n= 7\,years\\Amount\,paid= [P(1+\dfrac{r}{100\times12})^{n\times12} ]\\=[ 17,550 (1+\dfrac{5.32}{100\times12})^{7\times12} ]\\= [ 17,550 (\dfrac{12.0532}{12})^{84} ]\\\\= [ 17,550 (1.00443^{84} ]\\\\= \$ 25,440.48\\\\Total\,monthly\,payment = \rm\,\dfrac{25,440.48}{84}\\\\= \$\, $302.86\\\\](https://tex.z-dn.net/?f=%5Crm%5C%2CFor%5C%2CR%5C%5C%5C%5CP%20%3D%20%5C%24%5C%2C17%2C550%5C%5Cr%5C%2C%3D%205.32%5C%25%5C%5CTime%5C%2C%3D%20n%3D%207%5C%2Cyears%5C%5CAmount%5C%2Cpaid%3D%20%5BP%281%2B%5Cdfrac%7Br%7D%7B100%5Ctimes12%7D%29%5E%7Bn%5Ctimes12%7D%20%5D%5C%5C%3D%5B%2017%2C550%20%281%2B%5Cdfrac%7B5.32%7D%7B100%5Ctimes12%7D%29%5E%7B7%5Ctimes12%7D%20%5D%5C%5C%3D%20%5B%2017%2C550%20%28%5Cdfrac%7B12.0532%7D%7B12%7D%29%5E%7B84%7D%20%5D%5C%5C%5C%5C%3D%20%20%5B%2017%2C550%20%281.00443%5E%7B84%7D%20%5D%5C%5C%5C%5C%3D%20%5C%24%2025%2C440.48%5C%5C%5C%5CTotal%5C%2Cmonthly%5C%2Cpayment%20%3D%20%5Crm%5C%2C%5Cdfrac%7B25%2C440.48%7D%7B84%7D%5C%5C%5C%5C%3D%20%5C%24%5C%2C%20%24302.86%5C%5C%5C%5C)
![\rm\,For\,S =\\\\P=\,\$ 15,925\\r\,= 6.07\%\\T=n= 9\,years\\\\Amount\,paid\,= [P(1+\dfrac{r}{100\times12})^{n\times12} ]\\\\\= [15,925(1+\dfrac{0.0607}{12})^{9\times12} ]\\\\\\= [15,925(1+\dfrac{0.0607}{12})^{108} ]\\\\=[15,925(1.7247.84)} ]\\\\\= \$27,467.19\\\\Total\,monthly\,payment =\dfrac{\rm\,\$\,27,469.19}{108}\\\\= \$ 254.326\\\\](https://tex.z-dn.net/?f=%5Crm%5C%2CFor%5C%2CS%20%3D%5C%5C%5C%5CP%3D%5C%2C%5C%24%2015%2C925%5C%5Cr%5C%2C%3D%206.07%5C%25%5C%5CT%3Dn%3D%209%5C%2Cyears%5C%5C%5C%5CAmount%5C%2Cpaid%5C%2C%3D%20%5BP%281%2B%5Cdfrac%7Br%7D%7B100%5Ctimes12%7D%29%5E%7Bn%5Ctimes12%7D%20%5D%5C%5C%5C%5C%5C%3D%20%5B15%2C925%281%2B%5Cdfrac%7B0.0607%7D%7B12%7D%29%5E%7B9%5Ctimes12%7D%20%5D%5C%5C%5C%5C%5C%5C%3D%20%5B15%2C925%281%2B%5Cdfrac%7B0.0607%7D%7B12%7D%29%5E%7B108%7D%20%5D%5C%5C%5C%5C%3D%5B15%2C925%281.7247.84%29%7D%20%5D%5C%5C%5C%5C%5C%3D%20%5C%2427%2C467.19%5C%5C%5C%5CTotal%5C%2Cmonthly%5C%2Cpayment%20%3D%5Cdfrac%7B%5Crm%5C%2C%5C%24%5C%2C27%2C469.19%7D%7B108%7D%5C%5C%5C%5C%3D%20%5C%24%20254.326%5C%5C%5C%5C)
The difference between the monthly payment of R and S is equal to $48.53.
Hence, Loan R's monthly payment is greater than the loan's monthly payment by $48.53
To learn more about Compound interest, refer to the link:
brainly.com/question/14331235
The answer base on the given scenario would be letter a,
Roger would gain benefits as he was protected from a financial loss as this
insurance covers him financially as the insurance of which premiums he has paid
and were to gain would only make him the person of having to have the benefit
as he is the one who has the insurance covered for him, which is entitled to
his name and that the benefits and offers would be his gain.
1. Look for her toys in her toy chest. She didn’t even know that her brother hid her toys in the first place, so she’ll look for her toys in her toy chest, assuming she wants to play with them after dinner.
Hope this helps!