The number of permutations of picking 4 pens from the box is 30.
There are six different unique colored pens in a box.
We have to select four pens from the different unique colored pens.
We have to find in how many different orders the four pens can be selected.
<h3>What is a permutation?</h3>
A permutation is the number of different arrangements of a set of items in a particular definite order.
The formula used for permutation of n items for r selection is:

Where n! = n(n-1)(n-2)(n-3)..........1 and r! = r(r-1)(r-2)(r-3)........1
We have,
Number of colored pens = 6
n = 6.
Number of pens to be selected = 4
r = 4
Applying the permutation formula.
We get,
= 
= 6! / 4!
=(6x5x4x3x2x1 ) / ( 4x3x2x1)
= 6x5
=30
Thus the number of permutations of picking 4 pens from a total of 6 unique colored pens in the box is 30.
Learn more about permutation here:
brainly.com/question/14767366
#SPJ1
(6) typing for 20 characters dah dah dah
Answer:
5026*10^-5
Step-by-step explanation:
Answer:
<h2>
<em>(</em><em>4</em><em>,</em><em>5</em><em>)</em></h2>
<em>sol</em><em>ution</em><em>,</em>
<em>A</em><em>(</em><em>2</em><em>,</em><em>7</em><em>)</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>></em><em> </em><em>(</em><em>X1,</em><em>y1</em><em>)</em>
<em>B</em><em>(</em><em>6</em><em>,</em><em>3</em><em>)</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>></em><em>(</em><em>x2</em><em>,</em><em>y2</em><em>)</em>
<em>now</em><em>,</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>
Answer:
3
Step-by-step explanation:
1. 54÷6 =9
2. (12-4)=8
3. 9-8 = 1
4. 1+2 = 3
5. I hope this helps it's pretty simple oh and 3 is your anansw.Also you can you your calculator