<h2>
Answer with explanation:</h2>
We are asked to prove by the method of mathematical induction that:

where n is a positive integer.
then we have:

Hence, the result is true for n=1.
- Let us assume that the result is true for n=k
i.e.

- Now, we have to prove the result for n=k+1
i.e.
<u>To prove:</u> 
Let us take n=k+1
Hence, we have:

( Since, the result was true for n=k )
Hence, we have:

Also, we know that:

(
Since, for n=k+1 being a positive integer we have:
)
Hence, we have finally,

Hence, the result holds true for n=k+1
Hence, we may infer that the result is true for all n belonging to positive integer.
i.e.
where n is a positive integer.
Answer:
(x+1)(x+8) When factoring squares whose squared coefficient is one the roots must add up to the coefficient of the slope and multiply out to the intercept value.
The is (5000,59) and you can check this by doing this -0.004(5000)+79