1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-BARSIC- [3]
2 years ago
7

What is the domain and range?

Mathematics
1 answer:
snow_tiger [21]2 years ago
5 0
Domain: [-∞, ∞]

Range: [-9, ∞]
You might be interested in
Find the values of x and y
const2013 [10]

Answer:

x = 79 y = 22

Step-by-step explanation:

x would be the same as the other side so 79 * 2 would be 158. A whole triangle is 180. 180 - 158 = 22

7 0
3 years ago
Which of the g-values satisfy the following inequality? 7≥12−g
sergejj [24]

Answer:

g=6

Step-by-step explanation:

g=4 and g=5 will be more than 7 but g=6 is less.

4 0
2 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
When a business buys a fast food franchise, it is buying the recipes used at every restaurant with the same name. For example, a
den301095 [7]

Answer:

1 cup

Step-by-step explanation:

1/4= 6/24

1/3= 8/24                    --------

1/6= 4/24                    --------             24/24 = 1

1/8= 3/24                    

1/8= 3/24

8 0
3 years ago
Hey if some people wanna talk then pls do if ur 15 or older bc i bored thnx fam
inna [77]

Answer:

sure

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • what is the solution of the proportion? 3/4=m/32 24 8 3/8 1/24
    6·1 answer
  • Mrs. Williams is deciding between two field trips for her class. The Science Center charges $120 plus $5 per student. The Dino D
    10·1 answer
  • A circular pond 26 yd in diameter is surrounded by a gravel path 2 yd wide. The path is to be replaced by a brivk walk costing $
    9·1 answer
  • Please solve #9 for me idk how to do it
    15·1 answer
  • Factor completely x3 − 2x2 − 5x + 10.
    12·1 answer
  • Which is a counterexample for the conditional?
    15·1 answer
  • Please can you answer these two questions! ​
    7·1 answer
  • Raul Del Valle's gross weekly salary is S615. His weekly federal withholding is S55. The Social Security tax is
    14·1 answer
  • PLS HELP NEED THIS ASAP
    9·1 answer
  • What do all of these polygons have in common? There are four polygons labeled A, B, C and D. Each polygon has one pair of parall
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!