Answer:
Gas
Increase the pressure
Explanation:
Let's refer to the attached phase diagram for CO₂ (not to scale).
<em>At -57 °C and 1 atm, carbon dioxide is in which phase?</em>
If we look at the intersection between -57°C and 1 atm, we can see that CO₂ is in the gas phase.
<em>At 10°C and 2 atm carbon dioxide is in the gas phase. From these conditions, how could the gaseous CO₂ be converted into liquid CO₂?</em>
Since at 10°C and 2 atm carbon dioxide is below the triple point, the only way to convert it into liquid is by increasing the pressure (moving up in the vertical direction).
The ion N³⁻ is called the azide ion. In its neutral state, it occurs as the element Nitrogen. The atomic number of Nitrogen is 7. When it turns into an anion (negatively charged ion), it gains 3 more electrons. That's why its net charge becomes -3. It means that the protons is still 7, but the electrons are now 10.
Overall charge = +7 + -10 = -3
<span>The answer is "D" where the number of collisions per unit area is reduced by one-half. Drawing back on the piston means the volume is increased. The pressure is reduced. There are fewer collisions when the pressure is reduced.</span>
Answer:
Salt is the pure substance out of them all.
Answer:
The hydrogen ion concentration of the substance is 3.16*10⁻⁵ M
Explanation:
pH is a parameter used to measure the degree of acidity or alkalinity of a substance. The pH is calculated as the negative logarithm (base 10) of the concentration of hydronium ions [H₃O⁺] or hydrogen ions [H⁺].
pH= - log [H₃O⁺]= - log [H⁺]
Values on the pH scale range from 0 to 14, where pH equal to 7 is neutral, below 7 is acidic and above 7 is basic.
In this case, pH= 4.5
So:
4.5= - log [H⁺]
Solving:
[ H⁺]= 10⁻⁴ ⁵
[H⁺]= 3.16*10⁻⁵ M
The hydrogen ion concentration of the substance is 3.16*10⁻⁵ M