Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
A. Tolerance range is different for different organisms.
Answer:
Two moles of HC2H3O2 react with one mole of Ca(OH)2 to produce one mole of calcium acetate and two moles of water.
Explanation:
HC2H3O2 is Acetic acid that can also be represented as (CH3COOH).
when Ca(OH)2 reacts with Acetic acid the product formed will be Calcium acetate and water
Chemically the reaction can be represented as
2CH
3
COOH + Ca(OH)
2 → Ca(CH
3
COO)
2 + 2H
2
O
Two moles of CH3COOH react with one mole of Ca(OH)2 to produce one mole of Ca(CH3COO)2 and two moles of H2O.
Answer:
Carbon has the ability to form very long chains of interconnecting C-C bonds. This property allows carbon to form the backbone of organic compounds, carbon-containing compounds, which are the basis of all known organic life. Nearly 10 million carbon-containing organic compounds are known.
Answer:
Organic
Plate making
Ink mists
Gas, fumes and dust
Explanation:
the four categories commonly used to classify chemicals and chemical agents in the graphic communications industry are Organic ,Plate making ,Ink mists, Gas, fumes and dust.
Organic refer to those chemicals gotten from living matter and are natural.
Plate making refers to how plates are make and it carry image in the printing process.
Ink mist gotten from ink is use in graphic designs for painting and color indication.