Answer:
g(4) = 7 and f(g(4)) = 43
Step-by-step explanation:
First find g:
g(x) = 3x-5
g(x) = 3(4) - 5
g(x) = 12 - 5
g(x) = 7
Plug in:
f(g(4))
f(7)
Now, find f:
7^2 - 7 + 1
49 - 7 + 1
42 + 1
f(x) = 43
Answer:
Step-by-step explanation:
Method 1: Taking the log of both sides...
So take the log of both sides...
5^(2x + 1) = 25
log 5^(2x + 1) = log 25 <-- use property: log (a^x) = x log a...
(2x + 1)log 5 = log 25 <-- distribute log 5 inside the brackets...
(2x)log 5 + log 5 = log 25 <-- subtract log 5 both sides of the equation...
(2x)log 5 + log 5 - log 5 = log 25 - log 5
(2x)log 5 = log (25/5) <-- use property: log a - log b = log (a/b)
(2x)log 5 = log 5 <-- divide both sides by log 5
(2x)log 5 / log 5 = log 5 / log 5 <--- this equals 1..
2x = 1
x=1/2
Method 2
5^(2x+1)=5^2
2x+1=2
2x=1
x=1/2
Yes your answer is solved correctly