<h2>For the number 1<u>.</u><u>.</u></h2>
<h2><u>angle </u><u>at </u><u>center </u><u>=</u><u> </u><u>2</u><u>×</u><u>a</u><u>n</u><u>g</u><u>l</u><u>e</u><u> </u><u>at </u><u>circumference</u></h2><h2><u>the </u><u>angle </u><u>at </u><u>center </u><u>(</u><u>o)</u><u> </u><u>is </u><u>equal</u><u> </u><u>to</u><u> </u><u>1</u><u>4</u><u>1</u></h2>
<u>therefore:</u>
<h2><u>1</u><u>4</u><u>1</u><u> </u><u>=</u><u> </u><u>2</u><u>x</u></h2><h2><u>divide</u><u> </u><u>both </u><u>sides </u><u>by </u><u>2</u></h2><h2><u>x </u><u>=</u><u> </u><u>7</u><u>0</u><u>.</u><u>5</u></h2>
<u>option</u><u> </u><u>(</u><u>A)</u><u>.</u>
<u>(</u><u> </u><u>the </u><u>number </u><u>2</u><u> </u><u>and </u><u>3</u><u> </u><u>questions</u><u> </u><u>aren't</u><u> </u><u>correct </u><u>)</u>
The min or max of a parabola/quadratic function is the vertex
for
y=a(x-h)²+k
the vertex is (h,k)
so
vertex/min is at (-1,2)
h=-1
k=2
y=a(x-(-1))²+2
y=a(x+1)²+2
find a
given, (2,20) is on the graph
20=a(2+1)²+2
20=a(3)²+2
20=9a+2
minus 2 both sides
18=9a
divide by 9
2=a
y=2(x+1)²+2 is da equation
3rd one
f(x)=2(x+1)²+2
Answer:
the answere for this question is (b) because it has equal differences
Answer:
a. 6
b. 2
c. 1
Step-by-step explanation:
You can tell by looking at the Venn Diagram
Good luck!