32. Answer: 2+5×3=17
33. Answer: 2×5+3=17
34. Answer: 2×5×3=30
35. Answer: 2×5-3=7
Answer: y=1x-1
Step-by-step explanation:
Step-by-step explanation:
y + 3 = - (x + 3)
y + 3 = -x - 3
y = -x - 6
Area of the parabolic region = Integral of [a^2 - x^2 ]dx | from - a to a =
(a^2)x - (x^3)/3 | from - a to a = (a^2)(a) - (a^3)/3 - (a^2)(-a) + (-a^3)/3 =
= 2a^3 - 2(a^3)/3 = [4/3](a^3)
Area of the triangle = [1/2]base*height = [1/2](2a)(a)^2 = <span>a^3
ratio area of the triangle / area of the parabolic region = a^3 / {[4/3](a^3)} =
Limit of </span><span><span>a^3 / {[4/3](a^3)} </span>as a -> 0 = 1 /(4/3) = 4/3
</span>
The distance between two points on the plane is given by the formula below
![\begin{gathered} A=(x_1,y_1),B=(x_2,y_2) \\ \Rightarrow d(A,B)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%28x_1%2Cy_1%29%2CB%3D%28x_2%2Cy_2%29%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D%20%5Cend%7Bgathered%7D)
Therefore, in our case,

Thus,
![\begin{gathered} \Rightarrow d(A,B)=\sqrt[]{(-1-5)^2+(-3-2)^2}=\sqrt[]{6^2+5^2}=\sqrt[]{36+25}=\sqrt[]{61} \\ \Rightarrow d(A,B)=\sqrt[]{61} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28-1-5%29%5E2%2B%28-3-2%29%5E2%7D%3D%5Csqrt%5B%5D%7B6%5E2%2B5%5E2%7D%3D%5Csqrt%5B%5D%7B36%2B25%7D%3D%5Csqrt%5B%5D%7B61%7D%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B61%7D%20%5Cend%7Bgathered%7D)
Therefore, the answer is sqrt(61)
In general,

Remember that

Therefore,