1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmasim [6.3K]
2 years ago
9

Simplify (x + y)² - (x - y)² + 2xy - 3x²​

Mathematics
1 answer:
Vinil7 [7]2 years ago
3 0

Answer:

\huge\boxed{\sf 6xy-3x^2}

Step-by-step explanation:

<u>Given Expression:</u>

(x + y)² - (x - y)² + 2xy - 3x²​

<u>Formulas used:</u>

  • (x+y)^2=x^2+2xy+y^2
  • (x-y)^2=x^2-2xy+y^2

Expand the above expression according to the formulas

=x^2+2xy+y^2-(x^2-2xy+y^2)+2xy-3x^2\\\\= x^2+2xy+y^2-x^2+2xy-y^2+2xy-3x^2\\\\cancel \ out \ x^2 \ and \ y^2\\\\= 2xy+2xy+2xy-3x^2\\\\= 6xy-3x^2\\\\\rule[225]{225}{2}

You might be interested in
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Can you help me with my Math, please?
creativ13 [48]
The first poster is not an accurate representation of the painting, but the second poster is an accurate representation because the ratio between the first and original lengths did not equal the ratio between the first and original widths but the second poster's ratios were equal.
6 0
3 years ago
Read 2 more answers
Can someone help with this idk how to do it and pls explain.
V125BC [204]
{35km + x = 140km} {140km - 35km= 105km} so the car traveled 105 kilometers.
6 0
3 years ago
Read 2 more answers
6.
disa [49]

Answer:

1/3

goes up one over three

rise over run

3 0
3 years ago
If you flip a coin or roll a 6-sided die, what is the probabilty that you will flip a tails and roll a 2?
telo118 [61]

Answer:

\frac{1}{12}

Step-by-step explanation:

P(tail) = \frac{1}{2}

P(2) = \frac{1}{6}

P(tail and 2 ) = \frac{1}{2} × \frac{1}{6} = \frac{1}{12}


3 0
3 years ago
Other questions:
  • Simplify the cube root in simplest radical form.<br> 9x374<br> Please help
    10·1 answer
  • Evaluate the expression 4(2x + 3) + 2(x + 1)-7
    15·1 answer
  • Please help! I am stuck!
    11·1 answer
  • There are 5 yellow golf balls, 3 red golf balls, and 10 white golf balls in a bag. What are the odds of randomly choosing a yell
    11·2 answers
  • Find how much money needs to be deposited now into an account to obtain $7,300 (Future Value) in 6
    13·1 answer
  • Help help ASAP!!!!!!!!
    13·1 answer
  • Please solve this. I'm stumped.
    12·1 answer
  • Which statement best describes the function below?
    14·1 answer
  • What is the area of a rectangle with vertices (2, 3), (9, 3), (9, Negative 2), and (2, Negative 2)?
    15·2 answers
  • I need help with 4 and 12 through 18
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!