<u><em>However if you are asking how many different combinations, there can be 5005 different combinations.</em></u>
Answer:
<u><em>2 different groups of 6 children.</em></u>
Step-by-step explanation:
<u><em>There are 15 children </em></u><u><em>you need to bring. </em></u><u><em>You can fit 6 children in each van.</em></u>
<u><em>One van : 6 children</em></u>
<u><em>Two vans : 12 children</em></u>
<u><em>Three vans : 18 children</em></u>
<u><em>If you take </em></u><u><em>two vans, that will take 12 children</em></u><u><em>. But you need to fit 15.</em></u>
<u><em>If you take </em></u><u><em>three vans, that will take 18 children.</em></u><u><em> This is more than enough.</em></u>
<u><em>15 children - 6 = 9 children</em></u>
<u><em>Thats one group with 9 children left to take</em></u>
<u><em>9 children - 6 = 3 children</em></u>
<u><em>Thats two groups with 3 children left to take</em></u>
<u><em>3 children - 6 = -3.</em></u>
<u><em>This doesn't work. In this case, </em></u><u><em>there will be 3 more empty seats in the last group.</em></u>
<u><em>Since the question asks how many groups of </em></u><u><em>6 </em></u><u><em>children you can drive. It would be </em></u><u><em>two. </em></u><u><em>Becuase </em></u><u><em>there are 2 groups of 6 and one of 3</em></u><u><em>.</em></u>