Answer:
460
Step-by-step explanation:
23x20=460
The answer is d. it isn’t an exact number
Answer:
The greater the sample size the better is the estimation. A large sample leads to a more accurate result.
Step-by-step explanation:
Consider the table representing the number of heads and tails for all the number of tosses:
Number of tosses n (HEADS) n (TAILS) Ratio
10 3 7 3 : 7
30 14 16 7 : 8
100 60 40 3 : 2
Compute probability of heads for the tosses as follows:
The probability of heads in case of 10 tosses of a coin is -0.20 away from 50/50.
The probability of heads in case of 30 tosses of a coin is -0.033 away from 50/50.
The probability of heads in case of 100 tosses of a coin is 0.10 away from 50/50.
As it can be seen from the above explanation, that as the sample size is increasing the distance between the expected and observed proportion is decreasing.
This happens because, the greater the sample size the better is the estimation. A large sample leads to a more accurate result.
Answer/Step-by-step explanation:
1. Side CD and side DG meet at endpoint D to form <4. Therefore, the sides of <4 are:
Side CD and side DG.
2. Vertex of <2 is the endpoint at which two sides meet to form <2.
Vertex of <2 is D.
3. Another name for <3 is <EDG
4. <5 is less than 90°. Therefore, <5 can be classified as an acute angle.
5. <CDE is less than 180° but greater than 90°. Therefore, <CDE is classified as an obtuse angle.
6. m<5 = 42°
m<1 = 117°
m<CDF = ?
m<5 + m<1 = m<CDF (angle addition postulate)
42° + 117° = m<CDF (Substitution)
159° = m<CDF
m<CDF = 159°
7. m<3 = 73°
m<FDE = ?
m<FDG = right angle = 90°
m<3 + m<FDE = m<FDG (Angle addition postulate)
73° + m<FDE = 90° (Substitution)
73° + m<FDE - 73° = 90° - 73°
m<FDE = 17°