Do you mean the value of y? there is no q in these equations.
Answer:
The proof is below
Step-by-step explanation:
Given a parallelogram ABCD. Diagonals AC and BD intersect at E. We have to prove that AE is congruent to CE and BE is congruent to DE i.e diagonals of a parallelogram bisect each other.
In ΔACD and ΔBEC
AD=BC (∵Opposite sides of a parallelogram are equal)
∠DAC=∠BCE (∵Alternate angles)
∠ADC=∠CBE (∵Alternate angles)
By ASA rule, ΔACD≅ΔBEC
By CPCT(Corresponding Parts of Congruent triangles)
AE=EC and DE=EB
Hence, AE is conruent to CE and BE is congruent to DE
Answer:

Step-by-step explanation:
To solve this problem we need to be familiar with the formula for the surface area of a cone:

We are given the length of a side and the diameter, to calculate the radius divide the diameter in half:

To calculate the height of the cone, we must use the Pythagorean Theorem:

We can treat the side length as the hypotenuse
, the radius as the base
, and solve for height
. Set the expression up like this:

Now we can plug into our original formula:
