1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
2 years ago
12

FREE COINS! say thank u after ........

Mathematics
2 answers:
natita [175]2 years ago
5 0
Receiving a gift or your wish
andrew11 [14]2 years ago
4 0

Answer:

thxxxxx

Step-by-step explanation:

:)

You might be interested in
A rain gutter is made from sheets of aluminum that are 12 inches wide by turning up the edges to form right angles. Determine th
Len [333]

Answer:

Depth = 3 inches

Maximum cross-sectional area = 18 inches²

Step-by-step explanation:

Let 'D' be the depth of the gutter and 'W' be the width of the gutter, the cross-sectional area as function of depth, A(D), is:

2D+W = 12\\W=12-2D\\A =D*W\\A(D)=-2D^2+12D

The depth for which the derivate of the area function is zero is the depth that yields the maximum cross-sectional area:

A'(D)=0=-4D+12\\D=3\ inches

The cross-sectional area for D = 3 is:

A(3)=-2*3^2+12*3\\A(3) = 18\ in^2

6 0
3 years ago
15.30 find the inverse laplace transform of: 1. (a) f1(s) = 6s 2 8s 3 s(s 2 2s 5) 2. (b) f2(s) = s 2 5s 6 (s 1) 2 (s 4) 3. (c) f
EleoNora [17]

The solution of the inverse Laplace transforms is mathematically given as

  • f_{1}(t)=e^{-t}\sin (2 t)
  • f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}
  • f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

<h3>What is  the inverse Laplace transform?</h3>

1)

Generally, the equation for the function is  mathematically given as

$F_{1}(s)=\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}$

By Applying the Partial fractions method

\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+5}

$6 s^{2}+8 s+3=A\left(s^{2}+2 s+5\right)+(B s+C) s$

\begin{aligned}&3=5 A \\&A=\frac{3}{5}\end{aligned}

Considers s^2 coefficient

\begin{aligned}&6=A+B \\&B=6 \cdot A \\&B=\frac{27}{5}\end{aligned}

Consider s coeffici ent

\begin{aligned}&8=2 A+C \\&C=8-2 A \\&C=\frac{34}{5}\end{aligned}

Putting these values into the previous equation

&F_{1}(s)=\frac{3}{5 s}+\frac{27 s+34}{5\left(s^{2}+2 s+5\right)} \\\\&F_{1}(s)=\frac{3}{5 s}+\frac{27(s+1)}{5\left((s+1)^{2}+4\right)}+\frac{7 \times 2}{10\left((s+1)^{2}+4\right)}

By taking Inverse Laplace Transforms

f_{1}(t)=\frac{3}{5}+\frac{27}{5} e^{-t} \cos (2t) + \frac{7}{10}\\\\

f_{1}(t)=e^{-t}\sin (2 t)

For B

$F_{2}(s)=\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}$

By Applying Partial fractions method

\begin{aligned}&\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\\\&s^{2}+5 s+6=A(s+1)(s+4)+B(s+4)+C(s+1)^{2}\end{aligned}

at s=-1

1-5+6=3 B \\\\B=\frac{2}{3}

at s=-4

&16-20+6=9 C \\\\&9 C=2 \\\\&C=\frac{2}{9}

at s^2 coefficient

1=A+C

A=1-C

A=7/9

inputting Variables into the Previous Equation

\begin{aligned}&F_{2}(s)=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\&F_{2}(s)=\frac{7}{9(s+1)}+\frac{2}{3(s+1)^{2}}+\frac{2}{9(s+4)}\end{aligned}

By taking Inverse Laplace Transforms

f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}

For C

$F_{3}(s)=\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}$

Using the strategy of Partial Fractions

\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4 s+8}

10=A\left(s^{2}+4 s+8\right)+(B s+C)(s+1)

S=-1

10=(1-4+8) A

A=10/5

A=2

Consider constants

10=8 A+C

C=10-8 A

C=10-16

C=-6

Considers s^2 coefficient

0=A+B

B=-A

B=-2

inputting Variables into the Previous Equation

&F_{3}(s)=\frac{2}{s+1}+\frac{-2 s-6}{\left((s+2)^{2}+4\right)} \\\\&F_{3}(s)=\frac{2}{s+1}-\frac{2(s+2)}{\left((s+2)^{2}+4\right)}-\frac{2}{\left((s+2)^{2}+4\right)}

Inverse Laplace Transforms

f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

Read more about Laplace Transforms

brainly.com/question/14487937

#SPJ4

3 0
2 years ago
Which expression is equivalent to 60 Σ n=1 (2n − 1)2 ? Check all that apply.
Hunter-Best [27]

9514 1404 393

Answer:

  B, D

Step-by-step explanation:

The quadratic expands to ...

  (2n -1)² = (2n)² +2(2n)(-1) +(-1)² = 4n² -4n +1

The coefficients can be factored out of the sum, so ...

  ∑(4n²) = 4∑n² for example

The sum of 60 ones is 60:

  \displaystyle\sum_{n=1}^{60}{1}=1+1+1+\dots+1=60

So, the sum can be written as ...

  \displaystyle\sum_{n=1}^{60}{(2n-1)^2}\\\\=\boxed{4\sum_{n=1}^{60}{n^2}-4\sum_{n=1}^{60}{n}+\sum_{n=1}^{60}{1}}\\\\=\boxed{4\sum_{n=1}^{60}{n^2}-4\sum_{n=1}^{60}{n}+60}

_____

It appears that the key to choosing the correct answers is paying attention to signs.

7 0
3 years ago
Read 2 more answers
What is the value of 9 in 309.15​
stira [4]
The answer is tens because all the numbers the decimal end with an ‘s’, and all the numbers the decimal end with a ‘ths’.
4 0
3 years ago
Area of square rug? It’s inside is (5x+1)
Fynjy0 [20]
Square root of the area ?
8 0
4 years ago
Read 2 more answers
Other questions:
  • Help quick A 1 B 2 C 3 D 4
    6·2 answers
  • Write a quadratic function (f) whose zeros are −8 and 2.
    8·1 answer
  • Pls help with pie chart and mental questions
    8·2 answers
  • The following relative frequency distribution was constructed from a population of 400. Calculate the population mean, the popul
    11·1 answer
  • Joseph needs to find the quotient of 3,216 divided by 8. In what place is the first digit in the quotient?
    6·1 answer
  • Round 24.772 to each value listed below
    7·2 answers
  • Could some please help me !!!!!!!! I will give you 20 pts.<br> 10 each.
    8·1 answer
  • (N-2) x m when n = 5 and m =9
    7·1 answer
  • A teacher chooses a student at random from a class of 25 boys. Which BEST describes the probability that the student chosen is a
    8·2 answers
  • PLEASE HELP FAST 20 POINTS! I need A. And B.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!