Answer: No, the money won't be enough to buy the car
Step-by-step explanation:
you plan on buying yourself a new $20,000 car on graduation day and graduation day is 24 months time. If you invest $300 a month for the next 24 months.
The principal amount, p = 300
He is earning 4% a month, it means that it was compounded once in four months. This also means that it was compounded quarterly. So
n = 4
The rate at which the principal was compounded is 4%. So
r = 4/100 = 0.04
It was compounded for a total of 24 months. This is equivalent to 2 years. So
n = 2
The formula for compound interest is
A = P(1+r/n)^nt
A = total amount that would be compounded at the end of n years.
A = 300(1 + (0.04/4)/4)^4×2
A = 300(1 + 0.01)^8
A = 300(1.01)^8
A = $324.857
The total amount at the end of 24 months is below the cost of the car which is $20000. So he won't have enough money to buy the car
Answer:
Fraction : 3/9
Decimal : 0.33333333 (the .3 continues)
Percent : 33.33333%
Step-by-step explanation:
Dividing 3 by 9 will give you a continous set of 3.
Number of darts that hit the bull's eye = 15 x 40/100 = 6
Number of darts that did not hit the bull's eye = 15 - 6 = 9
Answer:
3.5%
Step-by-step explanation:
The volume of a cylinder = 
<em>r</em> = radius of cylinder,
<em>h</em> = height of cylinder
For the non-optimal can,
<em>r</em> = 2.75/2 = 1.375
<em>h</em> = 5.0

<em />
For the optimal can,
<em>d</em>/<em>h</em> = 1,
<em>d</em> = <em>h</em>
2<em>r </em>=<em> h</em>
<em>r</em> = h/2

They have the same volume.
<em />
<em />

(This is the height of the optimal can)
(This is the radius of the optimal can)
The area of a cylinder is
<em />
<em />
For the non-optimal can,

For the optimal can,

Amount of aluminum saved, as a percentage of the amount used to make the optimal cans = 