The size of the angle QUP in the system formed by the <em>equilateral</em> triangle QUR, the <em>equilateral</em> triangle PUT and the square RUTS is equal to 150°.
<h3>How to determine a missing angle within a geometrical system</h3>
By Euclidean geometry we know that squares are quadrilaterals with four sides of <em>equal</em> length and four <em>right</em> angles and triangles are <em>equilateral</em> when its three sides have <em>equal</em> length and three angles with a measure of 60°. In addition, a complete revolution has a measure of 360°.
Finally, we must solve the following equation for the angle QUP:
<em>m∠QUR + m∠QUP + m∠PUT + m∠RUT =</em> 360
60 <em>+ m∠QUP +</em> 60 <em>+</em> 90 <em>= 360</em>
<em>m∠QUP +</em> 210 <em>=</em> 360
<em>m∠QUP =</em> 150
The size of the angle QUP in the system formed by the <em>equilateral</em> triangle QUR, the <em>equilateral</em> triangle PUT and the square RUTS is equal to 150°.
To learn more on quadrilaterals, we kindly invite to check this verified question: brainly.com/question/13805601